郭 濤,王懷信
(天津大學(xué)機(jī)械工程學(xué)院,天津 300072)
采用不同工質(zhì)的中高溫?zé)岜美碚撗h(huán)特性
郭 濤,王懷信
(天津大學(xué)機(jī)械工程學(xué)院,天津 300072)
以指定工質(zhì)側(cè)相變真實(shí)平均溫度計(jì)算方法為基準(zhǔn),考察傳統(tǒng)的指定工質(zhì)側(cè)相變算術(shù)平均溫度計(jì)算方法對(duì)循環(huán)性能參數(shù)以及工質(zhì)對(duì)比評(píng)價(jià)結(jié)果的量化影響,并分析指出傳統(tǒng)計(jì)算方法的適用條件和范圍.采用指定相變真實(shí)平均溫度的計(jì)算方法并結(jié)合前期研究中對(duì)壓縮過(guò)程改進(jìn)的計(jì)算方法,在冷凝溫度80~140 ℃的工況范圍內(nèi)指導(dǎo)中高溫?zé)岜霉べ|(zhì)的篩選,篩選出20種臭氧層破壞勢(shì)(ODP)為0,全球變暖勢(shì)(GWP)較低的純質(zhì)和混合工質(zhì),并將篩選出的20種工質(zhì)與R11和R114進(jìn)行了對(duì)比.結(jié)果表明,這20種工質(zhì)的環(huán)境性能和綜合循環(huán)性能優(yōu)于R11和R114.
中高溫?zé)岜?;工質(zhì);循環(huán)特性
開(kāi)展中高溫?zé)岜眉夹g(shù)研究,具有拓展熱泵節(jié)能技術(shù)的應(yīng)用空間、提供工業(yè)余熱資源回收利用手段的節(jié)能與環(huán)保意義.熱泵技術(shù)高溫化研究,已受到國(guó)內(nèi)外研究機(jī)構(gòu)的高度重視[1-4].現(xiàn)階段,中高溫?zé)岜眉夹g(shù)研究的重點(diǎn)為基于常溫?zé)岜孟到y(tǒng)硬件,尋找環(huán)境特性和循環(huán)性能俱優(yōu)的中高溫?zé)岜眠m用工質(zhì).
與冰箱中的R12、空調(diào)中的R22不同,中高溫?zé)岜迷静淮嬖诠J(rèn)的代表性工質(zhì),盡管R11和R114曾在某些溫度范圍內(nèi)被應(yīng)用過(guò)[5].已有的研究中,Devotta等[6]對(duì)環(huán)氟化物進(jìn)行了研究;Goktun[7]在蒸發(fā)溫度90,℃,冷凝溫度150,℃理論篩選出了R123、R245ca、E245和E245cb等作為高溫?zé)岜霉べ|(zhì);Rakhesh等[8]對(duì)R227和R114進(jìn)行了實(shí)驗(yàn)研究,表明R227適宜在蒸發(fā)溫度高于30,℃使用;Liebenberg等[9]在中高溫?zé)岜弥欣肦22/142b得到60,℃的熱水;日本從1994—2001年,實(shí)施的名為“新制冷劑和其他物質(zhì)研究開(kāi)發(fā)”的國(guó)家項(xiàng)目,此項(xiàng)研究的結(jié)果顯示,E245mc有望成為替代R114的物質(zhì),并在85~90,℃出水溫度下進(jìn)行了實(shí)驗(yàn)研究[10-11].史琳等[3,12]利用HTR系列中高溫?zé)岜霉べ|(zhì),HTR01、HTR04可分別產(chǎn)生85,℃以及80,℃的熱水,在冷凝器出口水溫和蒸發(fā)器進(jìn)口水溫之差30,℃以內(nèi),性能系數(shù)(coefficiency of performance,COP)在3.0以上.馬利敏等[13-14]通過(guò)理論循環(huán)性能分析在60~140,℃的冷凝溫度范圍內(nèi)篩選中高溫?zé)岜霉べ|(zhì).
在以工質(zhì)篩選為目標(biāo)的理論循環(huán)性能研究中,一般對(duì)所有待考察工質(zhì)指定相同的內(nèi)循環(huán)參數(shù)(蒸發(fā)/冷凝溫度、過(guò)熱/冷度),存在2種工質(zhì)側(cè)溫度指定方法,一種是傳統(tǒng)的簡(jiǎn)化計(jì)算方法——相變算術(shù)平均溫度計(jì)算方法,此種方法也是已有文獻(xiàn)[13-14]中所采用的計(jì)算方法;另一種是以熱力學(xué)第二定律和卡諾定理為理論基礎(chǔ)的相變真實(shí)平均溫度(同文獻(xiàn)[15]中的當(dāng)量溫度)計(jì)算方法.就純質(zhì)而言,相變算術(shù)平均溫度與相變真實(shí)平均溫度是一致的;而對(duì)于非共沸混合工質(zhì),由于受到相變過(guò)程溫-焓關(guān)系非線性[16-17]的影響,2種平均溫度之間存在差值,這時(shí)如果用簡(jiǎn)化的相變算術(shù)平均溫度計(jì)算方法進(jìn)行工質(zhì)的理論循環(huán)性能計(jì)算,勢(shì)必對(duì)循環(huán)性能參數(shù)產(chǎn)生影響,進(jìn)而影響不同工質(zhì)間的對(duì)比評(píng)價(jià),這種影響的量化結(jié)果,以及傳統(tǒng)簡(jiǎn)化的計(jì)算方法的適用條件和范圍,將在本文的第1節(jié)做出探討.
本文第2節(jié)中,采用指定工質(zhì)側(cè)相變真實(shí)平均溫度的計(jì)算方法并結(jié)合前期研究[18]中對(duì)壓縮過(guò)程改進(jìn)的計(jì)算方法,在冷凝溫度80~140,℃的工況范圍內(nèi)指導(dǎo)中高溫?zé)岜霉べ|(zhì)的篩選,并考慮到不同工質(zhì)對(duì)不同溫度區(qū)間的適應(yīng)性,將考察工況進(jìn)一步劃分為80~110,℃以及110~140,℃的,2個(gè)溫度區(qū)間,分別在2個(gè)子區(qū)間內(nèi)進(jìn)行中高溫?zé)岜霉べ|(zhì)的篩選.
不同循環(huán)性能參數(shù)在各工況下的偏差,即偏差=(相變算術(shù)平均溫度計(jì)算方法-相變真實(shí)平均溫度計(jì)算方法)/相變真實(shí)平均溫度計(jì)算方法×100%.
1.1 2種不同形式的冷凝/蒸發(fā)溫度
圖1為純質(zhì)和非共沸混合工質(zhì)的理論熱泵/空調(diào)循環(huán)示意.其中,改進(jìn)后的壓縮過(guò)程5-5′-6′-7′的詳細(xì)分析參見(jiàn)文獻(xiàn)[18].2種不同形式的冷凝/蒸發(fā)溫度如下(對(duì)于純質(zhì),其相變算術(shù)平均溫度和相變真實(shí)平均溫度相等).
圖1 理論熱泵/空調(diào)循環(huán)示意Fig.1 Schematic diagram of theoretical cycle of heat pumps/air-conditioners
1)相變算術(shù)平均溫度
冷凝溫度為
1.2 空調(diào)標(biāo)準(zhǔn)工況下的考察
空調(diào)標(biāo)準(zhǔn)工況:tcond=54.4,℃,tevap=7.2,℃,tsub=46.1,℃,tsuc=18.3,℃;考察工質(zhì)為商品化的非共沸空調(diào)混合工質(zhì),不同工質(zhì)、不同循環(huán)性能參數(shù)偏差的計(jì)算結(jié)果見(jiàn)表1.
1.3 中高溫?zé)岜霉r下的考察
中高溫?zé)岜么砉r:tcond=95,℃,tevap=55,℃,tsub=90,℃,tsuc=60,℃;考察工質(zhì)為文獻(xiàn)[19]中篩選出的工質(zhì)M10~M12,以及本文選擇的其他3種中高溫?zé)岜霉べ|(zhì)G1~G3,不同工質(zhì)、不同循環(huán)性能參數(shù)的偏差的計(jì)算結(jié)果見(jiàn)表2.
表1 空調(diào)標(biāo)準(zhǔn)工況和傳統(tǒng)計(jì)算方式下不同工質(zhì)循環(huán)性能參數(shù)的偏差Tab.1 Deviations of performance parameters of working fluids by conventional method and under standard condition of air-conditioner
表2 中高溫?zé)岜么砉r和傳統(tǒng)計(jì)算方式下不同工質(zhì)循環(huán)性能參數(shù)的偏差Tab.2 Deviations of performance parameters of working fluids by conventional method and under typical condition of moderately high temperature heat pumps
1.4 分析討論
(1)由表1可知,表中出現(xiàn)了冷凝壓力偏差為0,而蒸發(fā)壓力偏差不為0的情況,這是因?yàn)樵谟?jì)算程序中設(shè)定,當(dāng)某一壓力下的相變算術(shù)平均溫度與相變真實(shí)平均溫度間的差值小于0.1,℃時(shí)(參照表中的最后2列數(shù)值),認(rèn)為2種計(jì)算方法下的結(jié)果相同.
(2)傳統(tǒng)的指定相變算術(shù)平均溫度的簡(jiǎn)化計(jì)算方法,對(duì)理論計(jì)算的壓比、單位容積制熱/冷量和COP(后兩者在不同工質(zhì)的對(duì)比評(píng)價(jià)中作為重點(diǎn)考察指標(biāo)給出)的影響較大,影響不同工質(zhì)循環(huán)性能間的相對(duì)排序(按COP排序).
(3)由表2中偏差的具體數(shù)值可知,蒸發(fā)壓力下相變算術(shù)平均溫度與真實(shí)平均溫度間的差值、單位容積制熱量和COPh的最大偏差出現(xiàn)在G1,分別為1.92,℃、7.87%和8.53%,對(duì)循環(huán)性能參數(shù)的影響在10%之內(nèi),在工程應(yīng)用中是可以接受的;故在工質(zhì)的相變算術(shù)平均溫度與真實(shí)平均溫度差值較小(本文認(rèn)為小于2.0,℃)、精度要求不高的工程應(yīng)用中,或當(dāng)2種平均溫度差值更小(本文為小于1.0,℃)的理論研究中,簡(jiǎn)化的相變算術(shù)平均溫度計(jì)算方法是適用的.
(4)為保證客觀性,應(yīng)當(dāng)采用以熱力學(xué)第二定律和卡諾定理為理論基礎(chǔ)的相變真實(shí)平均溫度計(jì)算方法.而影響非共沸混合工質(zhì)相變算術(shù)平均溫度和真實(shí)平均溫度間差值的因素,如工質(zhì)的物系、配比、工況等,文獻(xiàn)[17]中做過(guò)探討,但影響機(jī)理需進(jìn)一步研究.
2.1 計(jì)算工具及方法
本課題組[2]的前期研究表明,PT狀態(tài)方程及其混合規(guī)則[20]在中高溫?zé)岜霉べ|(zhì)的熱力學(xué)性質(zhì)與理論循環(huán)性能分析計(jì)算中,有較高的計(jì)算精度和較好的性能.本文以PT狀態(tài)方程及其混合規(guī)則[20]作為計(jì)算工具,指定相同的工質(zhì)側(cè)相變真實(shí)平均溫度以及結(jié)合前期研究[18]中對(duì)壓縮過(guò)程改進(jìn)的計(jì)算方法,進(jìn)行理論循環(huán)性能研究.
2.2 循環(huán)工況及相關(guān)參數(shù)指定
循環(huán)流程如圖1所示,考察工質(zhì)的基本熱物性參數(shù)見(jiàn)表3.對(duì)各種待考察的工質(zhì),指定相同的工質(zhì)側(cè)參數(shù)和壓縮機(jī)效率為:冷凝溫度80~110,℃、110~140,℃;循環(huán)溫升(tevap、tcond之差)統(tǒng)一取為40,℃;蒸發(fā)器出口過(guò)熱度以及過(guò)冷度均指定為5,℃;ηs=0.85,ηmech=0.85,ηmotor=0.85,ηt=0.90.
2.3 冷凝溫度80~110 ℃溫度區(qū)間內(nèi)10種工質(zhì)的理論循環(huán)性能
表4為10種工質(zhì)在80~110,℃冷凝溫度工況內(nèi),典型工況下的理論循環(huán)性能計(jì)算結(jié)果;圖2為10種工質(zhì)在該工況區(qū)間上的變工況理論循環(huán)性能.
由表4可知,M03、M05、M07和M09的綜合性能較好;M03~M05、M07~M09的綜合性能也全面好于R114,單位容積制熱量和COPh均高于R245fa;M01、M02和M06特色在于在COPh相差不多的情況下,相同壓縮機(jī)排量下的制熱量高于其他工質(zhì).
表3 工質(zhì)的基本物性參數(shù)Tab.3 Thermophysical parameters of working fluids
表4 10種中高溫?zé)岜霉べ|(zhì)的理論循環(huán)性能(冷凝溫度80~110 ℃)Tab.4 Teoretical cycle performances of ten working fluids for moderately high temperature heat pumps (condensing temperature 80 —110 ℃)
由圖2可知,M01的冷凝壓力過(guò)高,不適合應(yīng)用在冷凝溫度超過(guò)105,℃的工況下;其他8種混合工質(zhì)和R245fa在此溫度區(qū)間內(nèi),綜合性能均隨冷凝溫度的上升而提高;M07的綜合性能最優(yōu);M03、M04、M05和M08的性能也優(yōu)于R114;M01、M02、M06和R245fa與R114相比則分別在制熱量和COPh上具有優(yōu)勢(shì).在此溫度區(qū)間,M01~M09都具有作為中高溫?zé)岜霉べ|(zhì)的潛力和開(kāi)展實(shí)驗(yàn)研究考察的價(jià)值.
2.4 冷凝溫度110~140 ℃溫度區(qū)間內(nèi)10種工質(zhì)的2.4 理論循環(huán)性能
表5為10種工質(zhì)在110~140,℃冷凝溫度工況區(qū)間上,典型工況下的理論循環(huán)性能計(jì)算結(jié)果;圖3為10種工質(zhì)在該工況區(qū)間上的變工況理論循環(huán)性能.此溫度區(qū)間,對(duì)于蒸汽壓縮式熱泵來(lái)說(shuō)是相當(dāng)高的工作溫度區(qū)間,不論冷凝壓力還是排氣溫度都可能超出了目前熱泵系統(tǒng)的承受能力,但仍有部分工質(zhì)適用于此溫度區(qū)間.
圖2 冷凝溫度80~110 ℃區(qū)間上的理論循環(huán)性能Fig.2 Theoretical cycle performances based on the condensing temperature range 80—110 ℃
表5 10種中高溫?zé)岜霉べ|(zhì)的理論循環(huán)性能(冷凝溫度110~140 ℃)Tab.5 Theoretical cycle performances of ten working fluids for moderately high temperature heat pumps (condensing temperature 110—140 ℃)
由表5可知,E143、M11、M13、M15和M17排溫較高,其余考察工質(zhì)在此典型工況下都可以適用.所有考察工質(zhì)的COPh均高于R114的,其中M13和M17的制熱量較大,COPh適中;M11和M15具有較大的單位容積制熱量和COPh,排溫稍高;而E254cb、M10、M12、M14和M16制熱量略低;E143制熱量適中,COPh在所考察工質(zhì)中最高;與R11相比,E143、M11、M13、M15和M17在制熱量上占優(yōu)勢(shì).
由圖3可知,在此溫度區(qū)間內(nèi),各工質(zhì)的排溫都處在較高的水平上,M13最高已超過(guò)150 ℃,其余工質(zhì)也超過(guò)140 ℃,如果在此溫度下長(zhǎng)期運(yùn)行確實(shí)存在安全隱患.但溫度未必是永久的瓶頸,隨著壓縮機(jī)型式的改進(jìn)、材料的更新和硬件制造方面的改進(jìn),這些問(wèn)題有待解決.就循環(huán)性能而言,E143最優(yōu);E254cb、M10~M17的COPh均遠(yuǎn)遠(yuǎn)高于R114,制熱量稍低.
圖3 冷凝溫度110~140 ℃區(qū)間上的理論循環(huán)性能Fig.3 Theoretical cycle performances based on condensing temperature range 110—140 ℃
(1)在工質(zhì)的相變算術(shù)平均溫度與真實(shí)平均溫度差值較小(本文認(rèn)為小于2.0,℃)、精度要求不高的工程應(yīng)用中,或當(dāng)2種平均溫度差值更小(本文為小于1.0,℃)的理論研究中,簡(jiǎn)化的相變算術(shù)平均溫度計(jì)算方法是適用的;但是為保證客觀性,應(yīng)當(dāng)采用以熱力學(xué)第二定律和卡諾定理為理論基礎(chǔ)的相變真實(shí)平均溫度計(jì)算方法.
(2)在冷凝溫度80~110,℃溫度區(qū)間內(nèi),M07的綜合性能最優(yōu);M03、M04、M05和M08的性能也優(yōu)于R114;M01、M02、M06和R245fa與R114相比則分別在制熱量和COPh上具有優(yōu)勢(shì).
在冷凝溫度110~140,℃溫度區(qū)間內(nèi),就循環(huán)性能而言,E143最優(yōu);相比于R114,E254cb、M10~M17給出較高的COPh,制熱量稍低.如果能夠解決排溫高帶來(lái)的問(wèn)題,這幾種環(huán)境友好的純質(zhì)和混合物都有潛力在此高溫工況下運(yùn)行.
符號(hào)說(shuō)明:
t—溫度,℃;
p—壓力,MPa;
?t—溫度差,℃;
v—比容,m3/kg;
π—壓比;
q—單位質(zhì)量制熱量,kJ/kg;
qv—單位容積制熱量,kJ/m3;
h—比焓值,kJ/kg;
s—比熵值,kJ/(kg·K);
COP—循環(huán)性能系數(shù);
η—壓縮機(jī)效率;
tb—正常沸點(diǎn),℃;
tc—臨界溫度,℃;
pc—臨界壓力,MPa;
ε —偏差,%.
下標(biāo)
evap—蒸發(fā)、蒸發(fā)器;
cond—冷凝、冷凝器;
sub—過(guò)冷;
sup—過(guò)熱;
suc—吸氣;
disch—排氣;
arithm—算術(shù);
actual—真實(shí);
mech—機(jī)械;
motor—電機(jī);
t—熱;
g—滑移;
h—制熱;
c—制冷.
參考文獻(xiàn):
[1] Mottal R. Heat pump technology and working fluids[C]//6th International Congress of Refrigeration.Holland,1995,B4:1334-1341.
[2] 馬利敏. 中高溫?zé)岜霉べ|(zhì)的理論與實(shí)驗(yàn)研究[D]. 天津:天津大學(xué)機(jī)械工程學(xué)院,2006.
Ma Limin. Theoretical and Experimental Investigation on the Working Fluids for Moderate and High Temperature Heat Pumps[D]. Tianjin:School of Mechanical Engineering,Tianjin University,2006(in Chinese).
[3] Liu Nanxi,Shi Lin. Moderately high temperature water source heat-pumps using a near-azeotropic refrigerant mixture [J]. Applied Energy,2005,80:435-447.
[4] Li T X,Guo K H. High-temperature hot-water heat-pump with non-azeotropic refrigerant mixture HCFC22/ HCFC141b [J]. Energy Conversion and Management,2002,43(15):2033-2040.
[5] Devotta S. Alternative heat pump working fluids to CFCs [J]. Heat Recovery Systems & CHP,1995,15(3):273-279.
[6] Devotta S,Pendyala V R. Thermodynamic screening of some HFCs and fluorinated ethers for high temperature heat pumps as alternatives to CFC-114[J]. International Journal of Refrigeration,1994,17(5):338-342.
[7] Goktun S. Selection of working fluids for hightemperature heat pumps [J]. Energy,1995,20(7):623-625.
[8] Rakhesh B,Venkatarathnam G. Performance comparison of HFC227 and HCFC114 in compression heat pumps [J]. Applied Thermal Engineering,2003,23:1559-1566.
[9] Liebenberg L,Meyer J P. Potential of the zeotropic mixtures R-22/R-142b in high-temperature heat pump water heaters with capacity modulation [J]. ASHRAE Transactions,1998,104(1):418-429.
[10] Maruo K,Sekiya A. Research on fluorine containing new refrigerants—Mainly HFEs[C]//Proceedings of the International Symposium on HCFC-Alterative Refrigerants and Environmental Technology.Kobe,Japan,2002:69-74.
[11] Tsuge T,Sato H,Watanabe K. Thermodynamic properties and cycle performance of a new ahemative refrigerant,HF245mc[C]// Proceedings of International Conference on Ozone Protection Technologies. USA,1997:17-25.
[12] 昝 成,史 琳. 零ODP的中高溫?zé)岜霉べ|(zhì)HTR04實(shí)驗(yàn)研究[J]. 工程熱物理學(xué)報(bào),2007,28(6):919-921.
Zan Cheng,Shi Lin. Experiemental research on HTR04:A non-ozone depleting refrigerant for moderately high temperature heat pumps [J]. Journal of Engineering Thermophysics,2007,28(6):919-921(in Chinese).
[13] 張 宇,王懷信,馬利敏. 一種新型中高溫?zé)岜没旌瞎べ|(zhì)的循環(huán)性能[J]. 制冷學(xué)報(bào),2005,26(4):35-39.
Zhang Yu,Wang Huaixin,Ma Limin. Cycle performances of a new mixture for moderate and high temperature heat pump [J]. Journal of Refrigeration,2005,26(4):35-39(in Chinese).
[14] 馬利敏,王懷信. 幾種中高溫?zé)岜霉べ|(zhì)的理論循環(huán)性能[J]. 天津大學(xué)學(xué)報(bào),2005,38(8):689-694.
Ma Limin,Wang Huaixin. Theoretical cycle performances of refrigerants and a refrigerant mixture for moderate and high temperature heat pumps[J]. Journal of Tianjin University,2005,38(8):689-694(in Chinese).
[15] 馬一太,楊俊蘭. CO2跨臨界循環(huán)與傳統(tǒng)制冷循環(huán)的熱力學(xué)分析[J]. 太陽(yáng)能學(xué)報(bào),2005,26(6):836-841.
Ma Yitai,Yang Junlan. Thermodynamic analysis for transcritical CO2cycle and conventional refrigeration cycle[J]. Acta Energiae Solaris Sinica,2005,26(6):836-841(in Chinese).
[16] Venkatarathnam G,Mokashi G,Murthy S S. Occurrence of pinch points in condensers and evaporators for zeotropic refrigerant mixtures [J]. International J Refrig,1996,19(6):361-368.
[17] Venkatarathnam G,Murthy S S. Effect of mixture composition on the formation of pinch points in condensers and evaporators for zeotropic refrigerant mixtures [J]. Int J Refrig,1999,22(3):205-215.
[18] 王懷信,馬利敏. 理論制冷循環(huán)絕熱壓縮過(guò)程的改進(jìn)計(jì)算[J]. 工程熱物理學(xué)報(bào),2007,28(4):549-552.
Wang Huaixin,Ma Limin. Modifications in representing the compression process in the theoretical vapor compression refrigeration[J]. Journal of Engineering Thermophysics,2007,28(4):549-552(in Chinese).
[19] 張 宇. 新型中高溫?zé)岜没旌瞎べ|(zhì)的研究[D]. 天津:天津大學(xué)機(jī)械工程學(xué)院,2004.
Zhang Yu. New Refrigerant Mixtures as the Working Fluids for Moderate and High Temperature Heat Pumps [D]. Tianjin:School of Mechanical Engineering,Tianjin University,2004(in Chinese).
[20] Patel N C,Teja A S. A new cubic equation of state for fluids and fluid mixtures [J]. Chemical Engineering Science,1982,37(3):463-473.
Theoretical Cycle Performances of Working Fluids for Moderately High Temperature Heat Pumps
GUO Tao,WANG Huai-xin
(School of Mechanical Engineering,Tianjin University,Tianjin 300072,China)
A methodology of taking actual mean value of the refrigerant-side phase change temperature as the condensing/evaporating temperature was proposed for objective comparison of different working fluids for airconditioning and heat pump applications. Based on the proposed methodology, the quantitative influences of employing arithmetical mean value of the refrigerant-side phase change temperature as the conventional methodology on theoretical cycle performances and the screening quality of working fluids were investigated. The applicable conditions and ranges of the conventional methodology were also presented. Some working fluids within the condensing temperature range from 80 to 140 ℃were proposed and evaluated for moderately high temperature heat pumps. Theoretical investigations of the methodologies proposed in this paper and by the former studies related to the improved method of calculating the compression process in the compressor were carried out. Twenty appropriate recommendations with zero ozone depletion potential (ODP) and low global warming potential (GWP) values, suitable for condensing temperature above 80 ℃ were made and compared with R11 and R114. Those 20 working fluids present better environmental and cycle performances than R11 and R114. All the 20 working fluids presented in this paper have the potential to be used as working fluids for moderately high temperature heat pumps.
moderately high temperature heat pumps;working fluid;cycle performance
TB612
A
0493-2137(2010)08-0667-07
2009-04-03;
2009-08-28.
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(863計(jì)劃)資助項(xiàng)目(2009AA05Z431);國(guó)家自然科學(xué)基金資助項(xiàng)目(50476062).
郭 濤(1985— ),男,博士研究生,tguo_2008@tju.edu.cn.
王懷信,wanghx@tju.edu.cn.