• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cloud Computing(3)

    2010-06-05 03:32:24WangBaiXuLiutong
    ZTE Communications 2010年3期

    Wang Bai Xu Liutong

    (School of Computer Science and Technology,Beijing University of Posts and Telecommunications,Beijing 100876,P.R.China)

    6.4 Open Architecture

    V irtualization is a core technology for enabling cloud resource sharing,and Service-Oriented Architecture(SOA)enables flexibility,scalability,and reusability.By combining these two technologies,researchers have developed an open cloud computing architecture based on the Open System Interconnection(OSI)model,and have used it as the reference model for implementing the cloud computing system,as shown in Figure 6.

    This architecture encompasses cloud ecosystem,cloud infrastructure and its management,service-orientation,core provisioning and subscription,composite cloud offerings,cloud information architecture and management,and cloud quality analytics.In designing the architecture,seven basic principles are adopted:

    (1)Integrated Management for Cloud Ecosystem

    An architecture must support cloud computing ecosystem management.Such an ecosystem includes all services and solutions vendors,partners,and end users that provide or consume shared resources within the cloud computing environment.Collaboration between vendors and their partners is emphasized in the cloud computing value chain.

    (2)Virtualization for Cloud Infrastructure

    Hardware virtualization involves managing hardware equipment in plug-and-play mode;software virtualization involves using software image management or code virtualization technology to enable software sharing.Dynamic code assembly and execution is another software virtualization technology.In an Internet application,some JavaScript code elements can be dynamically retrieved and inserted into an Ajax package to create new functions or features for a web client.

    ▲Figure 6.Cloud computing open architecture.

    (3)Service-Orientation

    Service-orientation is a driving force that gives cloud computing business value in terms of asset reusability,composite applications,and mashup services.Common services can be reused to enable the cloud’s core provisioning and subscription services as wellas to build cloud offerings in Infrastructure as a Service(IaaS),Software as a Service(SaaS),and even Business Process as a Service(BPaaS).

    (4)Extensible Service Provisioning

    This feature is unique to cloud computing systems.Without extensibility,the provisioning part of the cloud architecture can only support a certain type of resource sharing.Free use and paying users can periodically change their roles as service providers or consumers and this change can occur at three levels of service provisioning.

    (5)Configurable Enablement for Cloud Offerings

    The architecture must ensure configurability of the cloud computing platform and services.The modularized ecosystem management,virtualization,service-orientation,and cloud core form a solid foundation to ensure a computing platform that is configurable,combinable and manageable.

    (6)Unified Information Representation and Exchange Framework

    The collaborative feature of cloud computing comprises information representation and message exchange between cloud computing resources.Cloud computing resources include all business entities(e.g.cloud clients,partners,and vendors)and supporting resources such as virtualization related modules,service-orientation related modules,cloud core,and cloud offerings.The cloud information architecture module enables representation of cloud entities in a unified cloud computing entity description framework.Message routing and exchange protocols as well as message transformation capability form the foundation of cloud information architecture.

    (7)Cloud Quality and Governance This module identifies and defines quality indicators for the cloud computing environment and a set of guidelines to govern the design,deployment,operation,and management of cloud offerings.

    In short,the objective of such an architecture is to combine SOA and virtualization technologies in order to exploit the business potential of cloud computing.

    ▲Figure 7.High-levelmarket-oriented cloud architecture.

    6.5 Market-Oriented Cloud

    Cloud computing is a new Internet-based resource sharing mode particularly focused on its business model.How,then,does this feature impact cloud computing?Researchers have proposed a market-oriented cloud architecture,global cloud exchange and market infrastructure for trading services,which have been investigated intensively.

    6.5.1 Market-Oriented Cloud Architecture

    In the article Cloud Computing and Emerging ITPlatform:Vision,Hype,and Reality for Delivering Computing as the 5thUtility,researchers from the Cloud Computing and Distributed Systems(CLOUDS)Laboratory of the University of Melbourne presented a market-oriented architecture.This architecture supports Quality of Service(QoS)negotiation and Service Level Agreement(SLA)-based resource allocation in the context of cloud computing,as shown in Figure 7.

    In this architecture,there are four main entities:

    (1)Users/Brokers

    Users(or brokers acting on their behalf)submit service requests from anywhere in the world to the Cloud Computing Center to be processed.

    (2)SLA Resource Allocator

    The SLAResource Allocator acts as the interface between Cloud service provider and external users/brokers.It requires the interaction of the following mechanisms to support SLA-oriented resource management.

    ?Service Request Examiner and Admission Control

    When a service request is first submitted,the Service Request Examiner and Admission Control mechanism interprets it for QoS requirements before determining whether to accept or reject it.The mechanism also requires updated status information on resource availability from the Virtual Machine(VM)Monitor mechanism and workload processing from the Service Request Monitor mechanism in order to make effective resource allocation decisions.It then assigns the request to a VM and determines resource entitlements for the allocated VM.

    ▲Figure 8.Globalcloud exchange and market infrastructure for trading services.

    ?Pricing

    The Pricing mechanism determines how service requests will be charged based on submission time(peak/off-peak),pricing rates,or resource availability.

    ?Accounting

    The Accounting mechanism meters the actual usage of resources by each request so that the final cost can be calculated and charged to the user.

    ?VM Monitor The VM Monitor mechanism oversees the availability of VMs and their resource entitlements.

    ?Service Request Monitor

    The Service Request Monitor mechanism oversees the execution progress of service requests.

    (3)VMs

    Multiple VMs can be activated or stopped dynamically on a single physical machine to meet accepted service requests.

    (4)Physical Machines

    Multiple computing servers form a resource cluster to meet service demands.

    Commercial market-oriented cloud systems must be able to:

    ?Support customer-driven service management;

    ?Define computational risk management tactics to identify,assess,and manage risks involved in the execution of applications;

    ?Devise appropriate market-based resource management strategies that encompass both customer-driven service management and computationalrisk management in order to sustain SLA-oriented resource allocation;

    ?Incorporate autonomic resource management models that effectively self-manage changes in service requirements in order to satisfy both new service demands and existing service obligations;

    ?Leverage VM technology to dynamically assign resource shares according to service requirements.

    6.5.2 Cloud Service Exchanges and Markets

    Enterprises currently employ cloud services to improve the scalability of their services and to dealwith bursts in resource demand.However,at present,the proprietary interfaces and pricing strategies of service providers prevent consumers from swapping one provider for another.For cloud computing to become mature,services must follow standard interfaces.This would enable services to be commoditized and would pave the way for the creation of a market infrastructure for trading in services.

    In cloud computing markets,service consumers expect their specific QoS requirements to be met with minimal expense,and service providers hope to retain their clients while achieving the highest possible Return on Investment(ROI).To achieve this,mechanisms,tools,and technologies must be developed to represent,convert,and enhance resource value.Figure 8 illustrates a cloud exchange and market system modelbased on real-world exchanges.

    In this model,the market directory allows participants to locate providers or consumers with suitable offers.Auctioneers periodically clear bids and requests received from market participants,and the banking system carries out financial transactions.

    Brokers perform the same function in such a market as they do in real-world markets:they mediate between consumers and providers by purchasing from the provider and sub-leasing to the consumer.Consumers,brokers and providers are bound to their requirements and related compensations through SLAs.An SLA specifies the details of the service to be provided in terms of metrics agreed upon by all parties,and penalties for violating these expectations,respectively.Such markets can bridge disparate clouds,allowing consumers to choose a suitable provider by either executing SLAs in advance or by purchasing capacity on the spot.Providers can set the prices for a resource based on market conditions,user demand,or current level of utilization of the resource.The admission-control mechanism at the provider end is responsible for selecting the auctions to participate in or the brokers to negotiate with.The negotiation process continues until an SLAis formed or the participants decide to break off.Brokers profit from the difference between the cost of leasing the resource,and what they charge consumers to gain a share of the resource.A broker,therefore,must choose both consumers and providers.Consumer demands include deadlines,fidelity of results,turnaround time of applications,and budget limitations.Enterprise consumers can deploy their own limited ITresources into clouds as guarantees for enterprise computing,or they can lease providers’resources to upscale their applications.

    The idea of utility markets for computing resources has been around for a long time.Recent research projects have particularly focused on trading VM-based resource allocation by time slices.In the above model,a resource broker can negotiate with resource providers.Based on enterprise Grid,Melbourne University’s CLOUDSLaboratory implements a market-oriented platform called"Aneka",which is also a NET-based service-oriented resource management platform.Aneka exhibits many of the properties of the cloud computing model.

    6.6 Comparison of Cluster,Grid,and Cloud Computing

    The first part in this series briefly introduced some characteristics of cloud computing that can be directly experienced by users.This part,however,discusses some of the technical characteristics that distinguish cloud computing platforms from cluster and grid computing.

    Although cloud platforms share some common characteristics with clusters and Grids,they have their own unique attributes and capabilities.These include support for virtualization,services with Web Service interfaces that can be dynamically composed,and support for the creation of third-party,value-added services by building on cloud compute,storage,and application services.Table 1 compares the key characteristics of cluster,grid and cloud computing systems.

    7 Cloud Computing Model

    Although enterprises and academic researchers have proposed various cloud system models,most of these do not reveal the computing paradigm for problem solving in a could.To enable communication and collaboration between server clusters within a cloud,Google has introduced Google File System(GFS),Big Table,and Map Reduce technologies—so-called the"three sharp weapons"of cloud computing.With these technologies,Google has formed a cloud with thousands or even millions of computers,creating a powerful data center.

    ▼Table 1.Key characteristics of clusters,grids,and cloud systems

    7.1 GFS File System

    Desktop applications differ from Internet applications in many respects.GFSis a proprietary distributed file system developed by Google Inc.It is designed to allow efficient and reliable access to data by using large clusters of commodity hardware.GFSis optimized for Google’s core data storage and usage needs(primarily the search engine),which can generate enormous amounts of data that needs to be retained.Google’s Internet search computing learns from the functional programming paradigm in which operations do not modify original data but generate new computing data.Therefore,one feature of GFSis that it generates a large number of very large files mainly for reading.These files can be appended but rarely re-written.GFS is also characterized by high data throughput.

    There are two types of GFSnodes:one master node,and a large number of chunkservers.Chunkservers store data files,with each individual file broken up into fixed-sized chunks of 64 megabytes.Each chunk is assigned a unique 64-bit labelto maintain logical mappings of files to constituent chunks.The master node only stores metadata associated with the chunks,such as the tables mapping the 64-bit labels to chunk locations and the files they make up,the locations of the copies of the chunks,what processes are reading or writing to a particular chunk,or taking a"snapshot"of the chunk pursuant to replicating it.This metadata is kept current by the master node as it periodically receives updates from each chunk server.

    Modification permissions are handled by means of time-limited"leases".The master node grants permission for a process to modify a chunk within a given period.The modifying chunkserver,which is always the primary chunk holder,then propagates the changes to chunkservers with backup copies for synchronization.With several redundant copies,reliability and availability are guaranteed.Programs access the chunks by first querying the Master server for the locations of the desired chunks,the Master replies with the locations,and the program then contacts and receives the data from the chunkserver directly.

    Google currently has over 200 GFS clusters,each of which consists of 1,000 to 5,000 servers.Using GFS,Google has proven that clouds built on cheap machines can also deliver reliable computing and storage.

    7.2 BigTable Database System

    Big Table is a compressed,high performance proprietary database system built mainly on GFSand Chubby Lock Service.It is also a distributed system for storing structured data.ABigTable is a sparse,distributed,multi-dimensional sorted map,which can be indexed by a row key,column key,and a timestamp.By allowing a client to dynamically control data layout,storage format,and storage location,Big Table meets application demands for localized access.Tables are optimized for GFS,being split into multiple tablets of about 200 megabytes.The locations in the GFSof tablets are recorded as database entries in multiple special tablets,which are called"META1"tablets.META1 tablets are found by querying the single"META0"tablet.The META0 tablet typically has a machine to itself which is queried by clients by clients for the location of the META1 tablets;and consequently,the location of the actual data.

    Big Table is designed for databases of petabyte scale with data across thousands of servers.It is also designed to accomodate more machines without the need for reconfiguration.

    7.3 Map Reduce Distributed Programming Paradigm

    GFSand Big Table are used by Google for reliable storage of data in a large-scale distributed environment.Google’s Map Reduce is a software framework designed to support parallel computing on large data sets(often greater than 1 terabyte)on a large cluster.It is therefore a computing model specifically designed for cloud computing.

    7.3.1 Software Framework

    The Map Reduce software framework design is inspired by two common programming functions:"Map"and"Reduce".It was developed within Google as a mechanism for processing large amounts of raw data;for example,counting the number of occurrences of each word in a large set of documents.In functional programming,map and reduce are tools for constructing higher-order functions.

    Map applies a given function to a list of elements(element by element)and returns a new list.These new elements are the products of the function applied to each element in the original list.For example,Map f[v1,v2,...,vn]=[f(v1),f(v2),...,f(vn)].In this way,the functions can be computed in parallel.The Map Reduce computing model is suitable for applications requiring high-performance parallel computing.If the same computing is required on a large set of data,the data set can be divided and assigned to different machines for computing.

    Reduce involves combining elements of a list using a computing approach(function).To unfold a binary operation(function)into a n-ary operation(function),the reduce function is used:Reduce f[v1,v2,...,vn]=f(v1,(Reduce f[v2,...,vn])=f(v1,f(v2,(Reduce f[v3,...,vn]))=f(v1,f(v2,f(...f(vn-1,vn)...)).Map Reduce computing model combines the intermediate results obtained from Map operations by Reduce operations until the final result is calculated.

    7.3.2 Execution Procedure

    Map invocations are distributed across multiple machines by automatically partitioning the input data into a set of splits or shards.Reduce invocations are distributed by partitioning the intermediate key space into pieces using a partitioning function.When the user program calls the Map Reduce function,the overall operation flow is illustrated in Figure 9.

    The Map Reduce library in the user program first splits the input files into M pieces.It then starts up many copies of the program on a cluster of machines.

    One of the copies of the program—the master—is special;the rest are workers.The master picks idle workers and assigns each one a map task or a reduce task.

    A worker that is assigned a Map task reads the contents of the corresponding input split.It parses key/value pairs out of the input data and passes each pair to the user-defined map function.The intermediate key/value pairs produced by the Map function are buffered in memory.

    ▲Figure 9.Google MapReduce execution procedure.

    The buffered pairs are periodically written to local disk and partitioned into R regions by the partitioning function.The locations of these buffered pairs on the local disk are passed back to the master,which is responsible for forwarding these locations to the Reduce workers.

    When a Reduce worker is notified by the master about these locations,it uses remote procedure calls to read the buffered data from the local disks of map workers.When a Reduce worker has read all intermediate data for its partition,it sorts it by the intermediate keys so that all occurrences of the same key are grouped together.The Reduce worker iterates over the sorted intermediate data and for each unique intermediate key encountered,it passes the key and the corresponding set of intermediate values to the user’s reduce function.The output of the reduce function is appended to a final output file for this reduce partition.

    When all Map and Reduce tasks have been completed,the master wakes up the user program.At this point,the Map Reduce call in the user program returns back to the user code.Upon completion,the output of the Map Reduce execution is available in the R output files.Typically,users do not need to combine these R output files into one file;they often pass these files as input to another Map Reduce call or use them from another distributed application.

    7.4 Apache Hadoop Distributed System Infrastructure

    Google’s GFS,Big Table,and Map Reduce technologies are open to the public but their implementation is private.Atypical implementation of these technologies in the open source community involves the Apache Hadoop project.Inspired by Google’s Map Reduce and GFS,Hadoop is an open-source Java software framework consisting of functional programming-based concurrent computing model,and a distributed file system.Hadoop’s HBase,similar to Big Table distributed database,supports data-intensive distributed applications to work with thousands of nodes and petabytes of data.

    Hadoop was originally developed to support distribution for the Nutch search engine project.Yahoo has invested a great deal of money into the project and uses Hadoop extensively in areas such as web search and advertising.IBM and Google have launched an initiative to use Hadoop to support university courses in distributed computer programming.All these have been instrumental in promoting and popularizing cloud computing worldwide.

    (To be continued)

    美女被艹到高潮喷水动态| 精品一区二区三区视频在线观看免费| 久久国产精品人妻蜜桃| 一进一出抽搐动态| 男人和女人高潮做爰伦理| 成人无遮挡网站| 免费电影在线观看免费观看| 嫩草影视91久久| 老司机在亚洲福利影院| 99久久精品一区二区三区| 色尼玛亚洲综合影院| 欧美中文日本在线观看视频| 很黄的视频免费| 亚洲人与动物交配视频| 久久午夜亚洲精品久久| 69av精品久久久久久| 精品免费久久久久久久清纯| 国产欧美日韩精品亚洲av| avwww免费| 午夜福利18| 国产一级毛片七仙女欲春2| 婷婷精品国产亚洲av| 国产精品亚洲美女久久久| 亚洲无线观看免费| 一区二区三区国产精品乱码| 一级毛片女人18水好多| 亚洲欧洲精品一区二区精品久久久| 中出人妻视频一区二区| 成人性生交大片免费视频hd| 亚洲成av人片免费观看| www.www免费av| 黄频高清免费视频| 最近视频中文字幕2019在线8| 一进一出好大好爽视频| av中文乱码字幕在线| 免费在线观看影片大全网站| 国产精品亚洲一级av第二区| 在线十欧美十亚洲十日本专区| 国产伦精品一区二区三区四那| 91老司机精品| svipshipincom国产片| 亚洲精品456在线播放app | 国产伦精品一区二区三区四那| 在线看三级毛片| 欧美3d第一页| 国产精品久久视频播放| 久久中文字幕一级| 国产精品一区二区三区四区久久| www日本黄色视频网| 精品一区二区三区视频在线观看免费| 国产精品一区二区精品视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 波多野结衣巨乳人妻| 久久久精品大字幕| 国产av一区在线观看免费| 日本三级黄在线观看| 免费在线观看成人毛片| 国产淫片久久久久久久久 | 天天躁日日操中文字幕| 黄色视频,在线免费观看| 午夜免费观看网址| 村上凉子中文字幕在线| 男人舔女人的私密视频| 91字幕亚洲| 美女被艹到高潮喷水动态| 亚洲在线观看片| 亚洲av电影不卡..在线观看| 最新在线观看一区二区三区| 老司机午夜十八禁免费视频| 真人一进一出gif抽搐免费| а√天堂www在线а√下载| 久久久精品欧美日韩精品| 男女床上黄色一级片免费看| 18禁国产床啪视频网站| 一a级毛片在线观看| 午夜福利欧美成人| 亚洲美女黄片视频| 又紧又爽又黄一区二区| 成人精品一区二区免费| 亚洲在线观看片| 国产探花在线观看一区二区| 久久午夜综合久久蜜桃| 欧美中文综合在线视频| 免费在线观看亚洲国产| 成人av在线播放网站| 国产淫片久久久久久久久 | 久久久国产成人精品二区| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 美女午夜性视频免费| 国模一区二区三区四区视频 | 久99久视频精品免费| 亚洲欧美日韩无卡精品| 日本黄色视频三级网站网址| 91在线观看av| 99精品在免费线老司机午夜| 精品午夜福利视频在线观看一区| 天天躁日日操中文字幕| 老司机在亚洲福利影院| 精品一区二区三区av网在线观看| 久久久久精品国产欧美久久久| 18美女黄网站色大片免费观看| 亚洲av美国av| 哪里可以看免费的av片| 最近视频中文字幕2019在线8| а√天堂www在线а√下载| 色播亚洲综合网| 久久天堂一区二区三区四区| 一级毛片高清免费大全| 亚洲人与动物交配视频| 国产精品久久久久久亚洲av鲁大| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| 18禁黄网站禁片午夜丰满| 欧美+亚洲+日韩+国产| 一本精品99久久精品77| 两个人看的免费小视频| 久久久国产精品麻豆| 日韩三级视频一区二区三区| 亚洲电影在线观看av| 中文亚洲av片在线观看爽| 久久国产精品影院| 激情在线观看视频在线高清| 99国产精品一区二区三区| 一本综合久久免费| 亚洲国产日韩欧美精品在线观看 | 色综合站精品国产| www日本黄色视频网| 在线观看免费视频日本深夜| 真人做人爱边吃奶动态| 国产日本99.免费观看| cao死你这个sao货| 亚洲中文av在线| 在线免费观看的www视频| 日韩 欧美 亚洲 中文字幕| 99国产极品粉嫩在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩瑟瑟在线播放| 亚洲无线观看免费| 国内久久婷婷六月综合欲色啪| 最新在线观看一区二区三区| 亚洲人与动物交配视频| 国产成人精品久久二区二区91| 麻豆国产97在线/欧美| 国产高清视频在线观看网站| 九九久久精品国产亚洲av麻豆 | 日韩成人在线观看一区二区三区| 精品一区二区三区视频在线观看免费| 精品一区二区三区视频在线观看免费| 久久久久久人人人人人| 国产高潮美女av| 97碰自拍视频| 少妇人妻一区二区三区视频| 亚洲av免费在线观看| 午夜福利免费观看在线| а√天堂www在线а√下载| www.自偷自拍.com| 在线播放国产精品三级| 久久久久性生活片| 久99久视频精品免费| 热99re8久久精品国产| 一级作爱视频免费观看| 欧美zozozo另类| av视频在线观看入口| 桃红色精品国产亚洲av| 在线观看日韩欧美| 性欧美人与动物交配| 精品久久久久久久久久免费视频| 国产伦精品一区二区三区四那| 国产av麻豆久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国产精品人妻aⅴ院| 成年版毛片免费区| 亚洲中文字幕一区二区三区有码在线看 | 国产v大片淫在线免费观看| 老司机午夜福利在线观看视频| 天天添夜夜摸| 美女免费视频网站| 国产精品综合久久久久久久免费| 中文资源天堂在线| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看亚洲国产| 国产精品女同一区二区软件 | 人人妻人人看人人澡| 日日摸夜夜添夜夜添小说| 香蕉久久夜色| 三级男女做爰猛烈吃奶摸视频| 国产精品综合久久久久久久免费| 亚洲国产精品sss在线观看| 久久欧美精品欧美久久欧美| 午夜视频精品福利| 日韩精品青青久久久久久| 精品久久久久久,| 久久精品国产亚洲av香蕉五月| 久久天堂一区二区三区四区| 欧美日韩黄片免| 欧美大码av| 亚洲第一欧美日韩一区二区三区| 两人在一起打扑克的视频| 亚洲国产色片| 91av网站免费观看| 99久久精品热视频| 精品福利观看| 久久久久免费精品人妻一区二区| 国产熟女xx| 免费在线观看视频国产中文字幕亚洲| 91九色精品人成在线观看| 久久久久国产精品人妻aⅴ院| 老司机在亚洲福利影院| 丁香六月欧美| xxx96com| 亚洲国产中文字幕在线视频| 午夜精品在线福利| 免费观看的影片在线观看| 亚洲成人久久爱视频| 最新在线观看一区二区三区| 中文字幕久久专区| 日韩精品中文字幕看吧| 国产男靠女视频免费网站| 亚洲熟妇中文字幕五十中出| 午夜亚洲福利在线播放| www.www免费av| 精品久久蜜臀av无| 亚洲 欧美一区二区三区| 国产亚洲精品av在线| 亚洲国产欧美网| av黄色大香蕉| 小蜜桃在线观看免费完整版高清| 欧美日韩精品网址| ponron亚洲| 国产精品久久久久久精品电影| 国产精品自产拍在线观看55亚洲| 日韩高清综合在线| 俺也久久电影网| 亚洲欧美激情综合另类| 一本精品99久久精品77| 亚洲欧美日韩东京热| 身体一侧抽搐| 国产精品香港三级国产av潘金莲| 久久久国产精品麻豆| 老鸭窝网址在线观看| 美女高潮的动态| 日本一本二区三区精品| 亚洲成av人片在线播放无| 一二三四在线观看免费中文在| 亚洲电影在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 99热只有精品国产| 91在线精品国自产拍蜜月 | 黑人巨大精品欧美一区二区mp4| 久久精品亚洲精品国产色婷小说| 国产午夜精品论理片| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 国内揄拍国产精品人妻在线| 亚洲欧美日韩无卡精品| 亚洲乱码一区二区免费版| 国产精品亚洲一级av第二区| 国产精品一区二区三区四区免费观看 | 搞女人的毛片| 国产亚洲av高清不卡| 久久欧美精品欧美久久欧美| 男女床上黄色一级片免费看| 18美女黄网站色大片免费观看| 国产69精品久久久久777片 | 婷婷六月久久综合丁香| 偷拍熟女少妇极品色| 男人和女人高潮做爰伦理| av片东京热男人的天堂| 亚洲欧美日韩高清专用| 1000部很黄的大片| 亚洲中文字幕日韩| 国产乱人伦免费视频| 人妻夜夜爽99麻豆av| 欧美日本亚洲视频在线播放| 国产蜜桃级精品一区二区三区| 国产一区二区激情短视频| 亚洲欧美日韩卡通动漫| 国产成人影院久久av| 亚洲一区高清亚洲精品| 国产又黄又爽又无遮挡在线| 久久久精品大字幕| 久久久久久久久中文| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 久久人人精品亚洲av| 久久久成人免费电影| 天天添夜夜摸| 在线免费观看不下载黄p国产 | 狂野欧美白嫩少妇大欣赏| 久久久久精品国产欧美久久久| 不卡av一区二区三区| 国产三级在线视频| 亚洲狠狠婷婷综合久久图片| 久9热在线精品视频| 婷婷丁香在线五月| 欧洲精品卡2卡3卡4卡5卡区| 99久久精品一区二区三区| 变态另类成人亚洲欧美熟女| 国产精品久久久人人做人人爽| 欧美黑人巨大hd| 日本黄色片子视频| 日本一本二区三区精品| 中文字幕av在线有码专区| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 一个人观看的视频www高清免费观看 | 免费看美女性在线毛片视频| 亚洲人与动物交配视频| 日韩大尺度精品在线看网址| 两个人的视频大全免费| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 国产 一区 欧美 日韩| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| 亚洲精品美女久久久久99蜜臀| 中国美女看黄片| 99久久综合精品五月天人人| 天堂av国产一区二区熟女人妻| 看黄色毛片网站| 国产成+人综合+亚洲专区| 超碰成人久久| av天堂中文字幕网| 我的老师免费观看完整版| ponron亚洲| 九九久久精品国产亚洲av麻豆 | 亚洲精品美女久久久久99蜜臀| 欧美日韩中文字幕国产精品一区二区三区| 在线观看美女被高潮喷水网站 | 精品日产1卡2卡| 国产精品99久久99久久久不卡| 91av网一区二区| 国产成人精品久久二区二区91| 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看 | 欧美一区二区国产精品久久精品| 欧美日韩福利视频一区二区| 亚洲人成伊人成综合网2020| 精品99又大又爽又粗少妇毛片 | 哪里可以看免费的av片| 五月玫瑰六月丁香| 免费看美女性在线毛片视频| 18禁黄网站禁片午夜丰满| 亚洲第一电影网av| 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| 午夜影院日韩av| 长腿黑丝高跟| a级毛片在线看网站| 日本黄色片子视频| 看片在线看免费视频| 黑人巨大精品欧美一区二区mp4| 日韩欧美精品v在线| 色综合站精品国产| 毛片女人毛片| 亚洲第一电影网av| 成人国产综合亚洲| 人人妻人人澡欧美一区二区| 亚洲av美国av| 午夜福利视频1000在线观看| 成人18禁在线播放| 亚洲色图av天堂| 日本黄大片高清| 成人三级黄色视频| 国产精品精品国产色婷婷| 午夜免费激情av| 日本一本二区三区精品| 精品一区二区三区视频在线观看免费| 十八禁网站免费在线| 可以在线观看的亚洲视频| 久久久精品大字幕| 亚洲 欧美一区二区三区| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 91字幕亚洲| 国产亚洲精品久久久久久毛片| 日韩欧美 国产精品| 夜夜爽天天搞| 99热精品在线国产| 波多野结衣高清无吗| 91av网站免费观看| 成人亚洲精品av一区二区| 午夜福利高清视频| 免费搜索国产男女视频| 淫妇啪啪啪对白视频| 亚洲熟女毛片儿| 精品福利观看| 麻豆国产97在线/欧美| 免费看日本二区| 十八禁网站免费在线| 午夜福利视频1000在线观看| 国产欧美日韩精品一区二区| 国产三级中文精品| 老司机福利观看| 欧美一级毛片孕妇| h日本视频在线播放| 一进一出抽搐gif免费好疼| 精品久久久久久久末码| 国产伦一二天堂av在线观看| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 精品午夜福利视频在线观看一区| 亚洲午夜理论影院| 男人舔女人的私密视频| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 欧美日韩精品网址| 国产欧美日韩精品亚洲av| 中文字幕精品亚洲无线码一区| 亚洲av片天天在线观看| 又粗又爽又猛毛片免费看| 色综合站精品国产| e午夜精品久久久久久久| 国产免费男女视频| 午夜影院日韩av| 国产精品 国内视频| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 天堂网av新在线| 丁香欧美五月| 一个人观看的视频www高清免费观看 | 日韩欧美免费精品| 女警被强在线播放| 亚洲国产精品合色在线| 亚洲片人在线观看| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 久久午夜亚洲精品久久| 天堂网av新在线| 国产成人系列免费观看| 青草久久国产| 中文字幕av在线有码专区| 啦啦啦免费观看视频1| 在线观看日韩欧美| 成人国产综合亚洲| 久久精品国产亚洲av香蕉五月| 欧美成人一区二区免费高清观看 | 国产真人三级小视频在线观看| 久久久久久久精品吃奶| 亚洲国产中文字幕在线视频| 国内少妇人妻偷人精品xxx网站 | 不卡一级毛片| 夜夜爽天天搞| 久久人妻av系列| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 久久午夜综合久久蜜桃| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 亚洲av电影不卡..在线观看| 一区二区三区国产精品乱码| 一进一出抽搐动态| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 中文字幕精品亚洲无线码一区| 一个人看视频在线观看www免费 | 久久国产精品影院| 亚洲国产欧美人成| 精品久久蜜臀av无| 亚洲电影在线观看av| 偷拍熟女少妇极品色| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 久久精品亚洲精品国产色婷小说| 色吧在线观看| 欧美中文日本在线观看视频| 999久久久精品免费观看国产| 一个人免费在线观看电影 | 一级a爱片免费观看的视频| 黄片大片在线免费观看| 香蕉久久夜色| www.999成人在线观看| 欧美成人免费av一区二区三区| 又粗又爽又猛毛片免费看| 最近最新免费中文字幕在线| 国产激情偷乱视频一区二区| 中文字幕人成人乱码亚洲影| 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看 | 色老头精品视频在线观看| 男女下面进入的视频免费午夜| 老鸭窝网址在线观看| 在线播放国产精品三级| 国产99白浆流出| 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 国内精品一区二区在线观看| 男人舔女人下体高潮全视频| 成人无遮挡网站| 男女那种视频在线观看| 一级a爱片免费观看的视频| 欧美乱妇无乱码| 又黄又粗又硬又大视频| 在线免费观看的www视频| 久久久久性生活片| 夜夜看夜夜爽夜夜摸| 欧美激情在线99| 黑人操中国人逼视频| 天堂动漫精品| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 亚洲欧美日韩东京热| 国产亚洲欧美在线一区二区| svipshipincom国产片| 搡老岳熟女国产| 三级毛片av免费| 免费在线观看影片大全网站| 天天躁日日操中文字幕| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久av网站| 国产精品 欧美亚洲| 日本五十路高清| 成人无遮挡网站| 欧美乱码精品一区二区三区| www日本黄色视频网| 精品一区二区三区视频在线 | 日本三级黄在线观看| 91字幕亚洲| 嫁个100分男人电影在线观看| 9191精品国产免费久久| 免费av毛片视频| 欧美黄色淫秽网站| 1000部很黄的大片| 亚洲aⅴ乱码一区二区在线播放| 国产精品电影一区二区三区| 国产成人系列免费观看| 1024手机看黄色片| 国产毛片a区久久久久| 成人特级av手机在线观看| 午夜久久久久精精品| 国产精品久久久av美女十八| 国产淫片久久久久久久久 | 日韩中文字幕欧美一区二区| 国产精品精品国产色婷婷| 两个人看的免费小视频| 欧美av亚洲av综合av国产av| 久99久视频精品免费| 成人国产综合亚洲| 黄色视频,在线免费观看| 天堂影院成人在线观看| 五月伊人婷婷丁香| 可以在线观看的亚洲视频| 国产亚洲av高清不卡| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| a级毛片a级免费在线| 精品午夜福利视频在线观看一区| 午夜免费成人在线视频| 午夜激情福利司机影院| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 国产视频一区二区在线看| 一边摸一边抽搐一进一小说| 美女被艹到高潮喷水动态| 人人妻,人人澡人人爽秒播| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 亚洲欧美精品综合一区二区三区| 18禁美女被吸乳视频| 在线观看舔阴道视频| 老汉色av国产亚洲站长工具| 国产aⅴ精品一区二区三区波| 久久这里只有精品中国| 精品99又大又爽又粗少妇毛片 | 欧美激情久久久久久爽电影| 免费观看人在逋| 黑人操中国人逼视频| 视频区欧美日本亚洲| 人人妻人人看人人澡| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 国产黄a三级三级三级人| 精品国内亚洲2022精品成人| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 九九久久精品国产亚洲av麻豆 | 淫妇啪啪啪对白视频| 国产极品精品免费视频能看的| 国产1区2区3区精品| www.999成人在线观看| 欧美另类亚洲清纯唯美| 亚洲成人中文字幕在线播放| 精品久久蜜臀av无| 国产一区二区在线观看日韩 | 久久精品人妻少妇| 无人区码免费观看不卡| 日韩免费av在线播放| 亚洲人成电影免费在线| 国产精品综合久久久久久久免费| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 国产一区在线观看成人免费| 婷婷六月久久综合丁香| 法律面前人人平等表现在哪些方面| 男人舔女人下体高潮全视频| 精品99又大又爽又粗少妇毛片 | 中文字幕av在线有码专区| 亚洲精品粉嫩美女一区| 久久热在线av| 免费av毛片视频| 精品久久久久久久久久久久久| 亚洲美女黄片视频| 老司机午夜十八禁免费视频| 伊人久久大香线蕉亚洲五| 1024手机看黄色片| 精品一区二区三区视频在线观看免费|