韓光 劉嘯波
歐洲船舶工業(yè)的低碳行動(dòng)
韓光 劉嘯波
近年來,盡管歐洲三大造船指標(biāo)全面下滑,世界造船重心轉(zhuǎn)向韓國、中國、日本,但憑借其強(qiáng)大的技術(shù)優(yōu)勢,歐洲仍處在世界船舶工業(yè)的領(lǐng)先地位。究其原因,是歐洲造船業(yè)始終堅(jiān)持技術(shù)引領(lǐng)的發(fā)展戰(zhàn)略,始終將關(guān)注重點(diǎn)放在科技開發(fā)上。在歐盟委員會(huì)的推動(dòng)下,歐洲先后出臺(tái)了一系列船舶技術(shù)研發(fā)政策,并開展了大量研發(fā)項(xiàng)目,如《船舶領(lǐng)袖2015計(jì)劃》(《Leadership 2015》)、《歐盟第六研發(fā)框架計(jì)劃》(FP6)、《歐盟第七研發(fā)框架計(jì)劃》(FP7)、船用超低排放燃燒高效率柴油機(jī)研發(fā)項(xiàng)目(Hercules),歐洲突破船舶和造船技術(shù)研究項(xiàng)目(BESST)等。受益于這些政策和項(xiàng)目,歐洲船舶工業(yè)在船舶設(shè)計(jì)建造技術(shù),船舶配套設(shè)備如船舶動(dòng)力設(shè)備、船舶控制設(shè)備等關(guān)鍵設(shè)備技術(shù)領(lǐng)域始終保持著世界先進(jìn)水平和主導(dǎo)地位。在全球倡導(dǎo)低碳經(jīng)濟(jì)的大背景下,歐洲各國大力開展船舶綠色、環(huán)保技術(shù)研發(fā),以期進(jìn)一步鞏固其優(yōu)勢地位。
2004年,在歐盟推動(dòng)下,船用超低排放燃燒高效率柴油機(jī)研發(fā)項(xiàng)目(Hercules)正式啟動(dòng)。截止2007年,第一階段Hercules-α項(xiàng)目的研發(fā)工作已成功結(jié)束,研究經(jīng)費(fèi)總計(jì)3300萬歐元(其中1500萬歐元由歐盟提供資助)。與2003年船用柴油機(jī)最先進(jìn)的技術(shù)相比, Hercules-α項(xiàng)目實(shí)現(xiàn)燃料消耗降低1.4%,NOx減排50%(與IMO2000年制定的排放標(biāo)準(zhǔn)相比),SOx減排90%,顆粒物質(zhì)(PM)減排40%,碳?xì)浠衔铮℉C)減排20%,可靠性達(dá)到8000小時(shí)以上。在Hercules-α項(xiàng)目基礎(chǔ)上,世界兩大船用柴油機(jī)巨頭MAN柴油機(jī)公司和瓦錫蘭公司共同牽頭開展Hercules-β項(xiàng)目,其研究方向也代表著環(huán)保型船用柴油機(jī)的研發(fā)趨勢。該項(xiàng)目目標(biāo)主要有提高船用柴油推進(jìn)效率60%以上,降低船用柴油消耗(SFC)10%,煙塵減排50%,NOx減排70%,達(dá)到IMO規(guī)定最高排放限值。該項(xiàng)目自2008年起實(shí)施,計(jì)劃研究周期36個(gè)月。
自2003年挪威船級社啟動(dòng)FellowSHIP項(xiàng)目——全面試驗(yàn)船上燃料電池以來,挪威船級社一直致力于船舶和海洋平臺(tái)用燃料電池的研究及商業(yè)化推廣。如果項(xiàng)目取得成功,將極大地降低二氧化碳排放量,提高能效,實(shí)現(xiàn)危險(xiǎn)物質(zhì)的零排放。該項(xiàng)目在2009年9月取得階段性進(jìn)展,在一艘海洋工程供應(yīng)船“海盜夫人”號(hào)上成功安裝320KW功率的燃料電池,作出了一次世界級創(chuàng)新。德國、冰島等歐盟國家也對第二代動(dòng)力之一的燃料電池十分積極。德國通過“ZEM項(xiàng)目”開發(fā)了可以乘坐100人的內(nèi)河專用燃料電池船舶,冰島也成功設(shè)計(jì)出全球首款氫能商用船。
此外,歐洲各國還致力于研究利用風(fēng)能、太陽能、液化天然氣等清潔能源為船舶提供動(dòng)力的技術(shù)。德國開發(fā)出世界第一艘風(fēng)動(dòng)力貨船“白鯨天帆(Beluga SkySails)”號(hào)和第一艘風(fēng)動(dòng)力漁船“瑪特杰迪多拉(Maartje·Theadora)”號(hào)。德國還研制出以太陽能為動(dòng)力的“星球陽光”號(hào)雙體船(如圖1所示)。挪威船級社設(shè)計(jì)一艘能利用液化天然(LNG)作為船舶燃料的新概念集裝箱(如圖2所示)。
荷蘭船舶氣腔系統(tǒng)(ACS)技術(shù)開發(fā)商DK集團(tuán)開發(fā)出氣腔系統(tǒng)技術(shù),并成功在一艘超大型油輪(VLCC)上進(jìn)行了相關(guān)測試。氣腔系統(tǒng)技術(shù)利用氣腔替代船底表面,能減少船底摩擦阻力,從而提高船舶的燃油效率。氣腔系統(tǒng)包括氣腔、噴氣系統(tǒng)和控制系統(tǒng)。如圖3所示,安裝在船底的氣腔,能減少船體與水接觸面積,從而減少船體阻力;自動(dòng)壓縮機(jī)和閥門組成的噴氣系統(tǒng)能向氣腔內(nèi)注入空氣,而控制系統(tǒng)則用于監(jiān)控空氣數(shù)量和氣壓,并維持氣腔內(nèi)的空氣處于最佳水平。船舶安裝氣腔系統(tǒng)后,最多能降低15%燃油消耗量,相應(yīng)也就減少了二氧化碳排放量。
英國科學(xué)家研制出可有效清除藤壺而不對海洋環(huán)境造成污染的船舶涂料。他們將一種比人類頭發(fā)細(xì)一千倍的碳納米管融進(jìn)油漆中,該碳納米管可在分子層面改變油漆表面。當(dāng)船舶移動(dòng)時(shí),附著生物可輕易被沖走。該船舶涂料的研究成功,不僅帶來了巨大經(jīng)濟(jì)效益,也具有重要的環(huán)保意義。因?yàn)?,多年來船舶上附著生物的問題一直困擾著全球船東,每年為清除此類生物大約要花費(fèi)數(shù)十億英鎊。不僅是航運(yùn)業(yè),就連私人游艇、海水淡化廠也深受其害。由于船舶附著藻類會(huì)增加船體阻力,從而增加船舶油耗,進(jìn)而導(dǎo)致碳排放增加。研究表明,一艘船舶粘附上藻類或藤壺,其速度會(huì)減少10%,而耗油量會(huì)上升40%,全球船舶業(yè)每年為此需耗資近一百億美元。
法國造船集團(tuán)——?dú)W洲世騰造船集團(tuán)設(shè)計(jì)出環(huán)保概念郵輪“Eoseas”號(hào)。該郵輪主要使用可再生能源,限制溫室氣體排放量,其設(shè)計(jì)充分體現(xiàn)了節(jié)能環(huán)保的理念。桅桿上的風(fēng)帆在為船舶提供風(fēng)能動(dòng)力的同時(shí),能將收集的空氣導(dǎo)入船底產(chǎn)生氣泡形成氣墊,從而減少船底阻力,提高船舶水動(dòng)效力;該郵輪使用液化天然氣(LNG)作為燃料,同時(shí),郵輪上還安裝了太陽能儲(chǔ)電板,能利用太陽能供電;其雙重外殼板設(shè)計(jì)更有作為天然空調(diào)系統(tǒng)之效;此外該郵輪會(huì)循環(huán)使用水、回收上層甲板的雨水、以及使用從處理廢物時(shí)回收的能源。
In 2004, driven by the European Union, the research and development project (Hercules) for marine diesel engine with ultra-low emission and high efficiency was launched formally. By 2007, the first stage work of Hercules-α project has successfully concluded,which costs a total of 33 million Euros including 15 million Euros provided by EU. Compared with the most advanced technology of marine diesel engine in 2003,the Hercules-α project realized a 1.4% reduction of fuel consumption, a 50% reduction in NOxemissions compared with the emission standard enacted by IMO in 2000,a 90% reduction in SOxemission, a 40% reduction in particle material (PM) emissions and a 20% reduction in hydrocarbon (HC) emissions, the reliability could last more than 8000 hours. On the basis of Hercules-α project, two marine diesel engine giants, MAN diesel engine company and Wartsila company jointly lead the development of Hercules-β project, whose research direction also represents the development trend of environmental marine diesel engine. The main targets of this project are to improve the propulsive eff i ciency of marine diesel engine by more than 60%, to reduce ship fuel consumption (SFC)by 10%, to reduce smoke dust emission by 50%, and to reduce NOxemission by 70% to achieve the highest emission limit set by IMO. This project was started in 2008,and is planned to last 36 months.
Since 2003 when DNV started the Fellow SHIP project which focused on comprehensive testing on marine fuel cell, DNV has been committed to the research and commercial promotion of fuel cell used on ships and marine platforms. If the project succeeds, the carbon dioxide emission will be dramatically reduced, the eff i ciency will be improved, and the zero discharge of hazardous substances will be realized. This project made a periodical progress in September 2009, the fuel cell of 320KW power was successfully installed onboard an oceaneering supply ship “Madam Pirate”, which made an innovation of a world-class. Germany, Iceland and other EU countries are also positive for the fuel cell which is considered to be one type of the second generation of power. Through the“ZEM project”, Germany has developed the fuel cell ship specialized in navigating in incoming rivers, which can accommodate 100 people. Iceland has also successfully designed the world's first hydrogen-powered commercial ship.
In addition, the European countries are also committed to the study and the use of the clean energy, like wind energy,solar energy and liquefied natural gas to provide power for ships. Germany developed the world’s fi rst cargo ship powered by wind, “Beluga SkySails” and the first fishing vessel powered by wind, “Maartje Theadora”. Germany also developed the catamaran powered by solar energy,“planet sunshine”. DNV designed a new concept container,which can be fuelled by liquef i ed natural gas (LNG).
The Dutch developer of ship air cavity system (ACS)technology, DK group developed the air cavity system technology, and carried out related testing on a VLCC successfully. The air cavity system technology replaces the surface of ship bottom with gas cavity to reduce the friction resistance of ship bottom, so as to improve the fuel efficiency. With the installation of air cavity system,fuel consumption can be reduced by 15%, and the carbon dioxide emission will also be correspondingly reduced.
Low Carbon Action of European Shipbuilding Industry
By Han Guang & Liu Xiaobo