• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ANALYTICAL AND NUMERICAL SOLUTIONS FOR THE FLOW IN MICROTUBE WITH THREE-DIMENSIONAL CORRUGATED SURFACE, PART 1: STEADY FLOW*

    2010-05-06 08:22:11WANGHaoliYANGMeng

    WANG Hao-li, YANG Meng

    College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China, E-mail: whl@cjlu.edu.cn

    WANG Yuan

    Department of Fluid Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

    ANALYTICAL AND NUMERICAL SOLUTIONS FOR THE FLOW IN MICROTUBE WITH THREE-DIMENSIONAL CORRUGATED SURFACE, PART 1: STEADY FLOW*

    WANG Hao-li, YANG Meng

    College of Metrological Technology and Engineering, China Jiliang University, Hangzhou 310018, China, E-mail: whl@cjlu.edu.cn

    WANG Yuan

    Department of Fluid Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

    (Received October 20, 2009, Revised July 2, 2010)

    The influences of three-dimensional corrugated wall on the fully-developed steady no-slip flows in microtube are studied by analytical and numerical methods in this article. Detailed analytical solutions for the space-averaged equations and the numerical method for the solutions of the disturbance equations are given. An iterative arithm of coupled equations with respect to space-averaged velocities and disturbance velocities is suggested. The study shows that a three-dimensional subsidiary stress layer exists in the near-wall region. The relative roughness, wavenumber and Reynolds number are three important parameters influencing the subsidiary stresses and the space-averaged pressure drop. The space-averaged pressure drop subject to an invariable flow rate mainly depends on the position of datum surface. When the datum surface is taken at the balance position of wall function, the value of pressure drop is determined by the dynamic characteristics of the flow.

    microtube, three-dimensional corrugated surface, space-averaged method, subsidiary stress

    1. Introduction

    Flows at microscales have been widely concerned subjects for their abroad application in biology, chemistry and industry since early 1980’s[1]. Compared with the flows at macroscales, the flows at microscales (the scales between 1 μm to 1 mm) are more complicated[2,3]. In order to research the effects of scales on microflows, the Knudsen number, Kn, has been introduced to estimate gas flow states at microscales, in which no-slip, slip, transition and free molecular flow regimes are divided. The gas flows will drop into no-slip regime at the scales ofcollocation method. The coupled equations between the space-averaged and the disturbance flows are solved iteratively.

    Fig.1 Schematic of microtube with three-dimensional corrugated wall

    2. Mathematic formulation

    Consider an infinitely long microtube whose inner surface have distributions of the three-dimensional corrugated elements (see Fig.1). The wall rough function, F( x ,θ) , is assumed as a two-dimensional periodic function. Choose their radius, R, as the characteristic length and the bulk averaged velocity, U = Q /(π R2) as the characteristic velocity (Q, the bulk flow rates), then the time-independent dimensionless Navier-Stokes equations of laminar flow in microtube and the boundary conditions are given in Eqs.(1) and (2)

    where u=(u, v, w)is the velocity vector in cylindrical coordinates, and three components are theaxial, radial and azimuthal velocities with respect to the coordinates x, r and θ, respectively, p the pressure, p = p( x, r,θ) , F( x,θ) the function of rough wall, F( x,θ) = O (1), ε the amplitude of rough function ε?1, Re the Reynolds number, Δ the Laplace operator in cylindrical coordinates. The non-physical wall surface at r=1 are termed as the datum surface in this study.

    The wall rough function, F( x,θ), is represented in terms of a constant plus an oscillatory function, given as

    where C0denotes the distance between the datum surface and the balance position of rough function, f( x,θ) the oscillatory function.

    The velocity and pressure of flow in the rough-wall microtube can be decomposed into space-averaged components plus their disturbance components as follows:

    where U0=(U0,V0)and Φ are the space-averaged velocity and pressure drop calculated in Eq.(5), u′, p′ are the disturbance velocity and pressure, respectively, p0( r) the space-averaged pressure on the reference section of x=0. It is known that p0=const for the Hagen-Poiseuille flow.

    As ε?1, the boundary conditions are expanded into the Taylor series at datum wall surface r=1 as follows:

    Using the standard methods, the velocity and pressure are decomposed into perturbation series as

    Substituting Eqs.(3) and (4) into Eq.(7), we have

    We can see that the second term on the left hand side of Eq.(9) is a space-averaged quantity termed as slip velocity and the third as well as the forth terms are disturbance velocities. The fifth term is a product of two disturbance quantities which still can be decomposed into a space-averaged quantity plus a disturbance one. According to the Fourier method, disturbance quantities are decomposed as

    where α, β are the wavenumbers in the axial and azimuthal directions respectively and c.c. the complex conjugate. Thus we can gain the following relationship:

    where u~mn= [u~mn,v~mn,w~mn]is the Fourier coefficient of disturbance velocity. We can see that the first term on the right hand side of Eq.(11) is also the space-averaged velocity to be termed as additional slip velocity, and the second term is additional disturbance velocity. The additional slip velocity is denoted as uwhere.

    All the terms in the Navier-Stokes Eqs.(1) are spatially averaged according to Eq.(6), and we obtain the space-averaged equations

    The space-averaged boundary condition at r=1 can be written as

    Subtracting the space-averaged equations from the time-independent Navier-Stokes Eqs.(1) and eliminating the terms of higher thanεyields the disturbance equations and their boundary condition

    Equations (12)-(16) compose a set of coupled equations.

    3. Solution methods

    3.1 Solution for space-averaged velocities

    By expanding Eq.(12), the space-averaged equations are reduced to a set of ODEs in terms of space-averaged axial, radial velocities and pressure as follows:

    where U0, V0are the space-averaged axial and radial velocities, respectively.

    The space-averaged radial velocity V0( r) has the zero solution from the continuity equation and the boundary conditions. Thus Eqs.(17a) and (17b) could be reduced to

    Substituting Eq.(21) into (22) gives thespace-averaged pressure drop Φ

    The radial distribution of space-averaged pressure p0( r) is approached by integrating Eq.(20) and the solution is

    3.2 Solutions for disturbance equations

    Expanding Eqs.(15)-(16), we can obtain the explicit forms of disturbance equations

    The explicit forms of boundary conditions are deduced as follows:

    The solutions for the disturbance equations can be approached numerically by the infinite difference method or spectral method. Due to its higher accuracy, the spectral collocation method is employed in this study. The Fourier coefficients of disturbance velocity and pressure are decomposed in spectral space as

    where J is the number of collocation points. By using the transform of r =(1 -ζ) /2, the variable, r, in physical space is transformed into that of the Chebyshev space, ζ.

    In this study, three-dimensional rough functions are given by the cosine functions as

    where C0is the space of the datum surface deviating from equilibrium position of rough wall, A the amplitude of rough wall function. As the relative wall roughness defined here is the difference between the peak and trough of rough wall, the constant, A, is taken as the value of 1/2 in this study for the sake of being equal to the small parameter, ε.

    From the boundary conditions given in Eq.(16), it can be seen that there are not the sub-harmonic components for this kind of rough walls, so according to Eqs.(10) and (27) the disturbance velocity and pressure are written as

    Substituting Eq.(30) into Eqs.(15) and (16) and separating the Fourier modes lead to the discretization equations and their boundary conditions in spectralspace. The discretization equations at collocation points have total 4J+4 unknown quantities. The explicit forms of boundary condition at r=0 are dependent on the values of β as follows:

    The equation of the radial velocity is expanded as

    which is considered as the boundary condition ofat r=1 in this study.

    3.3 Solution for the coupled equations

    The coupled equations include two ODEs with respect to the axial and swirling velocities and four PDEs. Solutions for the coupled equations are found by calculating u′ and p′ using a typical parabolic velocity profile, i.e., U?=2(1 - r2), and the initial

    0iterative solutions u ′?, p′?, τ?and Φ?can be obtained respectively. Substituting τ?and Φ?into the space-averaged equations yields the correctional solutions of space-averaged velocities U0??. In turn, the next iterative solutions, u′??, p′??, τ??and Φ??are approached. This process is repeated until all the quantities simultaneously attain some high degrees of accuracy. In the process of calculating the space-averaged velocities through Eqs.(21), (23) and (26), the numerical integration method is employed. The convergent criteria for coupled equations is given as where Θ denotes one of the physical quantities, k the iterative index, ω the convergent accuracy which is taken as 10?6in this study.

    Calculations show that the convergent speeds are satisfactory at low and moderate Reynolds numbers (Re< 103) and small relative wall roughness (ε<10%). In general, Re could be fairly large for smaller relative wall roughness and vise versa. The convergent speeds are proved quite high when the relative wall roughness taken as lower than 5%and the Reynolds number lower than 500 no matter what values of wavenumbers and C0are taken. However, it is difficult to converge for a larger Reynolds number as relative roughness increases and vice versa. In addition, the convergent speeds are tightly related to the parameter C0if the relative wall roughness and Reynolds number are taken comparatively large (equal to or greater than 7.5% for relative wall roughness and 500 for the Reynolds number, say). For a non-negative value of C0, the convergent speed is comparatively high, and the computational results can reach its accuracy no more than twenty steps. For a negative value of C0, however, the convergence becomes very slow. For examples, if C0= -1 /2 and the relative wall roughness and Reynolds number are taken as 7.5% and 1 000, respectively, the iterative steps are more than 100. This indicates that an increase of velocity based on an invariable flow rate will lead to an increase of non-linear effect.

    4. Results and discussion

    4.1 Subsidiary stress layers and space-averaged pressures

    The distributions of subsidiary stresses in the axial, radial and azimuthal directions are illustrated in Figs.2-4, respectively. Because the influences of rough wall on flows mainly exist in the regions near wall, subsidiary stress layers exist near the regions of wall as a matter of fact. In subsidiary stress layers, the fluid gain its subsidiary drive or drag forces in the three coordinate directions, which makes the flow patterns greatly different from those flows in smooth or two-dimensional rough tubes. At the first glance, we can see that there are different configurations of stress layers in different components. As is illustrated in Fig.2, the axial stresses go through two steps in the process far away from the datum surface: all the axial stress curves slope down from zero value to extreme values and then slope up to zero. Hence, the values of all axial stresses drop into a negative region, which indicates drag forces impose on the axial flows. As is illustrated in Fig.3, the radial stresses go through three steps in the process far away from datum surface: all the radial stress curves slopes up from zero to positiveextreme values and then slope down into the negative region. After arriving at negative extreme values, the radial stresses begin to slope up and soon disappear. Figure 4 presents the distributions of azimuthal stresses, and we can see that the azimuthal stress curves are different from radial stress curves in the process far from datum surface.

    Fig.2 Influences of the wall roughness on subsidiary stresses in axial direction

    The amplitudes and thicknesses of subsidiary stress layers with different wall rough parameters and Reynolds numbesr can be analyzed from these figures. As are illustrated in Figs.2(a), 3(a) and 4(a), the amplitudes of subsidiary stresses increase with the augments of wall rough amplitudes, but the thicknesses of subsidiary stress layeres are invariable fundamentally. This indicates that the amplitudes of subsidiary stresses are sensitive to the wall rough amplitudes, while the thicknesses of stress layers are not. It can be seen from Figs. 2(b), 3(b) and 4(b) that the amplitudes of subsidiary stresses increase with the augments of the wall wavenumbers, but the subsidiary stress layers become thin gradually. On one hand, the increases of the wall wavenumbers lead to the augments of shear rates in the near-wall region due to their high disturbance frequencies, and on the other hand the average kinetic energy of main flow increases with increase of wavenumber. The former makes the subsidiary stresses increase in the near-wall regions and the latter makes wall disturbances tend to be weakened. The influences of the Reynolds numbers on the subsidiary stresses are illustrated in Fig.4. It can be seen that the subsidiary stress layers become thin gradually with increasing Reynolds numbers. This can be explained as that the increase of the Reynolds numbers leads to the increase of the average kinetic energy of the main flow, so that the effects of rough wall on the flow field are weakened.

    Fig.3 Influences of the wall roughness on subsidiary stresses in radial direction

    It is known that the cross-section pressure distribution is a constant for the Hagen-Poiseuille flow. For the laminar flows in rough microtubes, however, the space-averaged pressure distributions (pressure distributions in short) are the functions of radius. The pressure distribution functions for different wall and flow parameters are presented in Fig.5, where the y-coordinate denotes the pressure distributions. We can see that the pressuredistributions slope down from a positive region to a negative region at first, and then slope up to zero (the cross section is the section of x=0). The pressures arrive at their maximum values on the datum surface.

    Fig.4 Influences of wall roughness on subsidiary stresses in azimuthal direction

    4.2 Space-averaged pressure drop

    Despite the fundamental simplicities of laminar flows in straight microchannels, experimental studies of microscale flows have often failed to reveal the expected relationship between the pressure drop (or friction factors) and Reynolds number. Further, flow discrepancies are neither consistently higher nor lower than macroscopic predictions. Sharp[19]presented some typical experimental results to illustrate the relationship between the pressure drop, Φ?, defined as Eq.(34) and the Reynolds number. The experimental data indicate that the pressure drop falls into a wide range of 0.5-2.5 under the conditions of the Reynolds numbers of 10?3to 103.

    Fig.5 Influences of wall roughness on pressure distribution at cross section

    In order to present a reasonable explanation for the diversity of measurement results of pressure drop, the Space-Averaged Pressure Drops (SAPDs) are calculated for different datum surfaces based on a constant flow rate. We can see from the Eq. (23) that the SAPD, Φ, composes two parts. One is only related to the geometrical configuration of the wall rough function, written as

    And another is the dynamic part,DΦ, written as

    where the quantities of O(ε3) in Eq.(23) have been ignored. We have

    Fig.6 Influences of wall roughness on the space-averaged pressure drop

    Obviously, if C0=0, the SAPD is only related with the dynamic correlated part,DΦ.

    The variations of SAPD with the increase of the Reynolds number for different parameters of wall roughness are illustrated in Fig.6, where the x-coordinate is the logarithm of the Reynolds number and y-coordinate denotes the SAPD. At first, we study

    The case of C0=0 is another concerned problem in this study, because the SAPD in this case is merely dependent on the dynamic correlation part. C0=0 means the datum surface to be taken at the balance position of the wall rough function. We can see from Fig.6(a) that the values of SAPD are approximately equal to the theoretical solution of the Hagen-Poiseuille flow for the small relative roughness (ε≤5%) and small wavenumbers (α = β= 5). Even for large wavenumbers, large variations of SAPD are still not found for small relative roughness, which can be seen in Fig.6(c), where the wavenumber is taken as 30. Hence, we can see that the dynamic correlation part of SAPD is insensitive to the wall parameters for the small relative roughness. However, for larger relative roughnesses (ε=7.5% and 10%, say), there are some differences. We can see from Fig.6(b) that the lines of SAPD have deviated from that of the Hagen-Poiseuille flow for small wavenumbers (α = β =5). From Fig.6(d) we can see that the values of SAPD for the relative roughness of 10% have great augments from theoretical solution with the increase of wavenumber, which can be attributed to the following two aspects. One is that the drag forces of flowing around the rough elements have some increases due to non-linear effect intensified under the condition of larger relative roughness, so the SAPD increases even under the small wall wavenumbers. Another reason is that greater wavenumbers lead to higher disturbance frequency, so that the effect of theviscous dissipation resulting from a higher wall shear action increases. This brings a conjecture for us that the wall roughness will give rise to an important effect on the viscous heating for microtube flows because a virtual surface includes numerous high wavenumber components according to Fourier’s theory.

    5. Conclusion

    The influences three-dimensional rough wall on the laminar microtube flows have been analyzed in this article. All physical quantities are decomposed into space-averaged flows plus disturbances owning to the presence of three-dimensional rough wall. The space-averaged equations and the disturbance equations are solved by the analytical methods and the spectral collocation method, respectively. A set of coupled equations are approached in an iterative arithmatic. Analytical and numerical results indicate that flows in three-dimensional rough wall microtubes have the following three main characteristics: three-dimensional subsidiary stress layers exist near wall; the laminar pressure drops in microtubes may be present three possibilities, i.e., higher than, equal to and even less than the solution of Hagen-Poisueille flow. These characteristics are influenced by the wall rough parameters in terms of wall relative roughness, wavenumbers as well as the Reynolds number.

    [1] WU P. Y., LITTLE W. A. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics, 1983, 23(5) : 273-277.

    [2] GUO Qiang, CHENG Rui and SILBER-LI Zhan-hua. Influence of capillarity on nano-liter flowrate measuremet with displacemet method[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(5): 594-600.

    [3] LIU Zhong-chun, YUE Xiang-an and HOU Ji-rui et al. Experimental study of microscale flow for micro molecule liquid and polymer solution[J]. Journal of Hydrodynamics, Ser. B, 2005,17(3): 352-357.

    [4] GAD-EL-HAK M. The MEMS handbook[M]. Boca Raton, USA: CRC Press, 2002.

    [5] MALA G. M., LI D. Q. Flow characteristics of water in microtubes[J]. Int. J. Heat Fluid Flow, 1999, 20(2): 142-148.

    [6] PAPAUTSKY I., BRAZILE J. and AMEEL T. et al. Laminar fluid behavior in microchannels using micropolar fluid theory[J]. Sensors and Actuators A, 1999, 73(1): 101-108.

    [7] CELATA G. P., CUMO M. and GULIELMI M. et al. Experimental investigation of hydraulic and single phase heat transfer in 0.130 mm capillary tube[J]. Nanoscale and Microscale Thermophysical Engineering, 2002, 6(2): 85-97.

    [8] LI Z. X., DU D. X. and GUO Z. Y. Experimental study on flow characteristics of liquid in circular microtubes[C]. Proceedings of the International conference on Heat Transfer and Transport Phenomena in Microscale. Ban, Canada, 2000, 162-167.

    [9] STANLEY R. S. Two-phase flow in microchannels[C]. Ph. D. Thesis, Ruston, L.A., USA: Louisiana Technology University, 1997.

    [10] CHEN Zhou, QIAN Jia-zhong and LUO Shao-he et al. Experimental study of friction factor for groundwater flow in a single rough fracture[J]. Journal of Hydrodynamics, 2009, 21(6): 820-825.

    [11] KLEINSTREUER C., KOO L. Computational analysis of wall roughness effects for liquid flow in micro-conduits[J]. J. Fluids Eng., 2004, 126(1): 1-9.

    [12] KOO L., KLEINSTREUER C. Liquid flow in micro-channels: Experimental observations and computational analyses of microfluidics effects[J]. J. Micromech. Microeng., 2003, 13(5): 568-579.

    [13] RAWOOL A. S., MITRA S. K. and KANDLIKAR S. G. Numerical simulation of flow through microchannels with designed roughness[J]. Microfluids and Nanofluids, 2006, 2(3): 215-221.

    [14] TUCK E. O., KOUZOUBOV A. A laminar roughness boundary condition[J]. J. Fluid Mech., 1995, 300: 59-70.

    [15] WANG Hao-li, WANG Yuan and ZHANG Jia-zhong. Influence of ribbon structure rough wall on the microscale Poiseuille flow[J]. J. Fluids Eng., 2005, 127(6): 1140-1145

    [16] WANG Hao-li, WANG Yuan. Flow in microchannels with rough walls: Flow pattern and pressure drop[J]. J. Micromech. Microeng., 2007, 17(3): 586-596

    [17] WANG Hao-li, WANG Yuan. Influence of threedimensional wall roughness on the laminar flow in microtube[J]. Int. J. Heat Fluid Flow, 2007, 28(2): 220-228.

    [18] GAMRAT G., FAVRE-MARINET M. and PERSON S. L. An experimental study and modelling of roughness effects on laminar flow in microchannels[J]. J. Fluid Mech., 2008, 594: 399-423.

    [19] SHARP K. V. Experimental investigation of liquid and particle-laden flows in microtubes[C]. Ph. D. Thesis, Urbana-Champaign, USA: University of Illinois, 2001.

    10.1016/S1001-6058(09)60099-8

    * Project supported by the National Natural Science Foundation of China (Grant No. 10702066), Natural Science Foundation of Zhejiang Province (Grant No. Y7080398).

    Biography: WANG Hao-li (1972-), Male, Ph. D., Associate Professor

    成人特级黄色片久久久久久久 | 免费一级毛片在线播放高清视频 | 国产精品成人在线| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 天天影视国产精品| 国产成人精品久久二区二区91| 老司机午夜十八禁免费视频| 少妇猛男粗大的猛烈进出视频| 欧美成人午夜精品| 亚洲av美国av| a级毛片在线看网站| 两人在一起打扑克的视频| 国产成人免费无遮挡视频| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月 | 狂野欧美激情性xxxx| 丝袜美足系列| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 精品熟女少妇八av免费久了| 黄色怎么调成土黄色| 变态另类成人亚洲欧美熟女 | 久久国产精品人妻蜜桃| 久久久久久免费高清国产稀缺| 久热这里只有精品99| 大型av网站在线播放| 一本—道久久a久久精品蜜桃钙片| 少妇猛男粗大的猛烈进出视频| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影 | 久久国产精品影院| 国产高清激情床上av| 久久精品国产亚洲av高清一级| 日本vs欧美在线观看视频| 国产成人免费无遮挡视频| 成人av一区二区三区在线看| 亚洲第一青青草原| 久9热在线精品视频| 人人澡人人妻人| 黄网站色视频无遮挡免费观看| 欧美变态另类bdsm刘玥| 黄片大片在线免费观看| 精品国内亚洲2022精品成人 | 极品少妇高潮喷水抽搐| 满18在线观看网站| 国产男女内射视频| 中文亚洲av片在线观看爽 | 久久久久国内视频| 我的亚洲天堂| 精品国产超薄肉色丝袜足j| 日韩欧美三级三区| 日本av免费视频播放| 精品第一国产精品| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 狂野欧美激情性xxxx| av不卡在线播放| 巨乳人妻的诱惑在线观看| 少妇裸体淫交视频免费看高清 | 精品国产乱码久久久久久男人| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 日韩成人在线观看一区二区三区| 黄频高清免费视频| 高清在线国产一区| 在线观看66精品国产| 久久久精品免费免费高清| 久久久久久久精品吃奶| 国产高清videossex| 水蜜桃什么品种好| 亚洲,欧美精品.| 黄片大片在线免费观看| 成人精品一区二区免费| 女人高潮潮喷娇喘18禁视频| 满18在线观看网站| 正在播放国产对白刺激| 日韩免费av在线播放| 岛国毛片在线播放| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 欧美一级毛片孕妇| 女同久久另类99精品国产91| 十八禁网站免费在线| 欧美日韩视频精品一区| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 国产三级黄色录像| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看| 国产伦理片在线播放av一区| 18禁黄网站禁片午夜丰满| 91精品国产国语对白视频| 欧美+亚洲+日韩+国产| 午夜福利免费观看在线| 亚洲国产欧美在线一区| 九色亚洲精品在线播放| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频| 中文字幕精品免费在线观看视频| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 久久午夜综合久久蜜桃| 自线自在国产av| 天天添夜夜摸| 中文字幕色久视频| 97人妻天天添夜夜摸| 日韩欧美一区二区三区在线观看 | 操出白浆在线播放| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 婷婷成人精品国产| 亚洲九九香蕉| 国产亚洲欧美精品永久| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 一本色道久久久久久精品综合| 在线十欧美十亚洲十日本专区| 80岁老熟妇乱子伦牲交| 国产av又大| 国产成人免费无遮挡视频| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 成人18禁高潮啪啪吃奶动态图| 在线观看www视频免费| 岛国毛片在线播放| 2018国产大陆天天弄谢| 亚洲国产成人一精品久久久| 中文字幕人妻丝袜制服| 91大片在线观看| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 国产aⅴ精品一区二区三区波| 亚洲精品国产区一区二| 中文字幕人妻丝袜制服| 天堂8中文在线网| 成人国产一区最新在线观看| 天堂中文最新版在线下载| 大码成人一级视频| 欧美日韩黄片免| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 手机成人av网站| 蜜桃在线观看..| 久9热在线精品视频| 91九色精品人成在线观看| 九色亚洲精品在线播放| 亚洲熟妇熟女久久| 婷婷丁香在线五月| 国产亚洲一区二区精品| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 91字幕亚洲| 天堂中文最新版在线下载| 久久ye,这里只有精品| 久久婷婷成人综合色麻豆| 99在线人妻在线中文字幕 | 无限看片的www在线观看| h视频一区二区三区| 国产精品成人在线| 欧美精品啪啪一区二区三区| 亚洲精品美女久久av网站| av片东京热男人的天堂| 日本黄色视频三级网站网址 | 亚洲国产av新网站| 亚洲成人免费电影在线观看| 露出奶头的视频| 亚洲综合色网址| 亚洲三区欧美一区| 中文字幕人妻丝袜制服| 夫妻午夜视频| 999精品在线视频| 国产av一区二区精品久久| cao死你这个sao货| 正在播放国产对白刺激| 日韩一区二区三区影片| 露出奶头的视频| 法律面前人人平等表现在哪些方面| 久久婷婷成人综合色麻豆| 香蕉丝袜av| 国产高清videossex| 纯流量卡能插随身wifi吗| 免费女性裸体啪啪无遮挡网站| 欧美国产精品一级二级三级| 国产亚洲精品第一综合不卡| 欧美人与性动交α欧美精品济南到| 欧美乱码精品一区二区三区| 老汉色av国产亚洲站长工具| 夜夜夜夜夜久久久久| av免费在线观看网站| 大香蕉久久网| www.精华液| 纯流量卡能插随身wifi吗| 大型av网站在线播放| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月 | 热re99久久国产66热| 国产又色又爽无遮挡免费看| 人人妻人人澡人人看| 国产精品国产高清国产av | 久9热在线精品视频| 超碰成人久久| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 在线观看免费视频日本深夜| 成人亚洲精品一区在线观看| 黄色a级毛片大全视频| 亚洲美女黄片视频| 国产精品美女特级片免费视频播放器 | 人人妻人人爽人人添夜夜欢视频| 91麻豆av在线| 中文字幕制服av| 国产福利在线免费观看视频| 丝袜美足系列| 精品乱码久久久久久99久播| 免费久久久久久久精品成人欧美视频| 精品人妻1区二区| 麻豆av在线久日| 丝袜美足系列| 欧美黄色片欧美黄色片| 首页视频小说图片口味搜索| 热re99久久精品国产66热6| 99国产综合亚洲精品| 精品第一国产精品| 人妻 亚洲 视频| 一进一出抽搐动态| 蜜桃国产av成人99| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| 高清视频免费观看一区二区| 午夜久久久在线观看| 999久久久国产精品视频| 69av精品久久久久久 | 精品国产乱码久久久久久男人| 国产一区二区 视频在线| 欧美精品高潮呻吟av久久| 国产av又大| 下体分泌物呈黄色| 久久中文字幕一级| 中文字幕高清在线视频| 1024香蕉在线观看| 亚洲精品国产一区二区精华液| 亚洲 国产 在线| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 美女高潮喷水抽搐中文字幕| 黄色丝袜av网址大全| 十八禁高潮呻吟视频| 欧美乱妇无乱码| 色婷婷久久久亚洲欧美| 91av网站免费观看| 9191精品国产免费久久| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 极品少妇高潮喷水抽搐| 99久久国产精品久久久| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 欧美激情久久久久久爽电影 | 五月天丁香电影| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 亚洲成人国产一区在线观看| 国产精品欧美亚洲77777| 精品亚洲乱码少妇综合久久| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女 | 国产精品亚洲一级av第二区| cao死你这个sao货| 欧美国产精品va在线观看不卡| 亚洲精品国产精品久久久不卡| √禁漫天堂资源中文www| 91字幕亚洲| 国产黄频视频在线观看| 曰老女人黄片| 99国产综合亚洲精品| 久久99热这里只频精品6学生| 国产精品香港三级国产av潘金莲| 成人国产av品久久久| 国产色视频综合| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜| 91大片在线观看| 成年动漫av网址| 夜夜夜夜夜久久久久| 亚洲国产成人一精品久久久| 免费观看a级毛片全部| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 一本久久精品| 国产精品.久久久| 制服人妻中文乱码| av视频免费观看在线观看| 精品久久蜜臀av无| 精品亚洲成国产av| 亚洲伊人久久精品综合| 乱人伦中国视频| 日韩大码丰满熟妇| 午夜日韩欧美国产| 久久久水蜜桃国产精品网| 免费久久久久久久精品成人欧美视频| 久久国产精品男人的天堂亚洲| 精品一区二区三区四区五区乱码| www.自偷自拍.com| 操出白浆在线播放| 999久久久国产精品视频| 欧美精品一区二区免费开放| 亚洲成人免费电影在线观看| 纵有疾风起免费观看全集完整版| 国产精品久久久久成人av| 亚洲av日韩精品久久久久久密| 色视频在线一区二区三区| 久久亚洲精品不卡| 亚洲avbb在线观看| 亚洲精品久久成人aⅴ小说| 亚洲国产av新网站| 十八禁高潮呻吟视频| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 老司机靠b影院| 99riav亚洲国产免费| av不卡在线播放| 成在线人永久免费视频| 色播在线永久视频| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 99re6热这里在线精品视频| 国产片内射在线| 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区| 欧美av亚洲av综合av国产av| 777米奇影视久久| 久久久国产欧美日韩av| 狂野欧美激情性xxxx| 男女午夜视频在线观看| av片东京热男人的天堂| 在线观看人妻少妇| 一本—道久久a久久精品蜜桃钙片| 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 日韩制服丝袜自拍偷拍| 亚洲国产av影院在线观看| 欧美+亚洲+日韩+国产| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 久久久久国内视频| 精品国产亚洲在线| 香蕉国产在线看| 午夜两性在线视频| 久久午夜亚洲精品久久| 老熟妇仑乱视频hdxx| 后天国语完整版免费观看| 激情视频va一区二区三区| 视频在线观看一区二区三区| 国产亚洲av高清不卡| 国产黄色免费在线视频| 亚洲成人免费电影在线观看| tocl精华| 日韩免费av在线播放| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 亚洲人成电影免费在线| 好男人电影高清在线观看| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 视频区图区小说| 久久久久久久国产电影| 免费不卡黄色视频| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 深夜精品福利| 精品少妇久久久久久888优播| 一本一本久久a久久精品综合妖精| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 成在线人永久免费视频| 老司机亚洲免费影院| 天天操日日干夜夜撸| 国产精品1区2区在线观看. | 精品一区二区三区四区五区乱码| tube8黄色片| 亚洲成国产人片在线观看| 免费黄频网站在线观看国产| 亚洲avbb在线观看| 宅男免费午夜| 午夜免费鲁丝| 人人妻人人澡人人爽人人夜夜| netflix在线观看网站| 久久人妻福利社区极品人妻图片| 岛国在线观看网站| 中国美女看黄片| 在线观看66精品国产| 欧美日韩成人在线一区二区| 动漫黄色视频在线观看| 免费在线观看黄色视频的| 乱人伦中国视频| 成人国产av品久久久| 777米奇影视久久| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 成年人免费黄色播放视频| 美女福利国产在线| 亚洲人成77777在线视频| 91九色精品人成在线观看| 国产伦人伦偷精品视频| 手机成人av网站| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 亚洲 国产 在线| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 欧美国产精品一级二级三级| 亚洲第一青青草原| 免费在线观看日本一区| 女性生殖器流出的白浆| 9191精品国产免费久久| 51午夜福利影视在线观看| 国产精品国产高清国产av | av又黄又爽大尺度在线免费看| 巨乳人妻的诱惑在线观看| 免费av中文字幕在线| 国产一卡二卡三卡精品| 精品国内亚洲2022精品成人 | 亚洲国产欧美一区二区综合| 建设人人有责人人尽责人人享有的| 国产av又大| 嫩草影视91久久| 少妇的丰满在线观看| 国产淫语在线视频| 我的亚洲天堂| 久久中文字幕人妻熟女| 水蜜桃什么品种好| 一区在线观看完整版| 成人国产一区最新在线观看| 一本色道久久久久久精品综合| 久久精品aⅴ一区二区三区四区| 国产一区二区 视频在线| av有码第一页| 亚洲自偷自拍图片 自拍| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 69精品国产乱码久久久| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 久久av网站| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 久久久久精品国产欧美久久久| a级片在线免费高清观看视频| 国产精品电影一区二区三区 | 日韩中文字幕视频在线看片| 国产高清激情床上av| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文av在线| 成人永久免费在线观看视频 | 少妇粗大呻吟视频| 女人精品久久久久毛片| 两个人免费观看高清视频| 黄色怎么调成土黄色| 久久中文字幕人妻熟女| 国产精品98久久久久久宅男小说| 亚洲色图 男人天堂 中文字幕| 午夜免费成人在线视频| av网站在线播放免费| 一本一本久久a久久精品综合妖精| 丝袜美足系列| 天天操日日干夜夜撸| 亚洲精品在线美女| 99久久精品国产亚洲精品| 在线观看免费视频网站a站| 国产在线精品亚洲第一网站| 成人亚洲精品一区在线观看| 岛国在线观看网站| 如日韩欧美国产精品一区二区三区| www.熟女人妻精品国产| 久久久水蜜桃国产精品网| 夜夜骑夜夜射夜夜干| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 成人国语在线视频| 国产精品久久久人人做人人爽| 窝窝影院91人妻| 精品国产乱码久久久久久男人| 黑人巨大精品欧美一区二区mp4| tocl精华| 波多野结衣av一区二区av| 久久久精品94久久精品| 成年人免费黄色播放视频| 不卡av一区二区三区| 十八禁人妻一区二区| 大型黄色视频在线免费观看| 大片电影免费在线观看免费| 一二三四社区在线视频社区8| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 午夜视频精品福利| 欧美成人免费av一区二区三区 | 亚洲性夜色夜夜综合| 777久久人妻少妇嫩草av网站| tocl精华| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 久久国产精品大桥未久av| 一级a爱视频在线免费观看| 一进一出抽搐动态| 国产主播在线观看一区二区| 看免费av毛片| 男女之事视频高清在线观看| 动漫黄色视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产精品免费一区二区三区在线 | 成年人午夜在线观看视频| 一区在线观看完整版| 国产又爽黄色视频| 久久99热这里只频精品6学生| 亚洲精品中文字幕一二三四区 | 18禁裸乳无遮挡动漫免费视频| 18禁国产床啪视频网站| 午夜日韩欧美国产| 视频在线观看一区二区三区| 亚洲精品在线观看二区| 搡老乐熟女国产| 午夜福利在线免费观看网站| 亚洲欧美精品综合一区二区三区| 国产欧美日韩综合在线一区二区| 免费少妇av软件| 啦啦啦中文免费视频观看日本| 亚洲一码二码三码区别大吗| 天堂俺去俺来也www色官网| 在线av久久热| 亚洲成av片中文字幕在线观看| 欧美性长视频在线观看| 久久午夜亚洲精品久久| 免费少妇av软件| 国产av国产精品国产| 久久亚洲真实| 久久人人97超碰香蕉20202| 高清在线国产一区| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费 | 精品一区二区三卡| 久久青草综合色| 满18在线观看网站| 日韩免费av在线播放| 丰满人妻熟妇乱又伦精品不卡| 午夜福利免费观看在线| 一边摸一边做爽爽视频免费| av片东京热男人的天堂| 国产精品二区激情视频| 色老头精品视频在线观看| 国产国语露脸激情在线看| 热99久久久久精品小说推荐| 一本久久精品| 一区在线观看完整版| 亚洲精品久久成人aⅴ小说| 大片免费播放器 马上看| 又大又爽又粗| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av激情在线播放| 国产成人精品久久二区二区91| 亚洲 国产 在线| 中文字幕最新亚洲高清| 叶爱在线成人免费视频播放| 欧美国产精品va在线观看不卡| 日韩有码中文字幕| 两个人免费观看高清视频| 搡老熟女国产l中国老女人| 国产精品偷伦视频观看了| 欧美精品高潮呻吟av久久| 日日夜夜操网爽| 亚洲一区二区三区欧美精品| 97在线人人人人妻| 精品国产乱子伦一区二区三区| 亚洲国产精品一区二区三区在线| 亚洲全国av大片| 搡老乐熟女国产| 亚洲av第一区精品v没综合| 天天躁夜夜躁狠狠躁躁| 国产人伦9x9x在线观看| 欧美激情高清一区二区三区| 老司机靠b影院| 男女高潮啪啪啪动态图| 俄罗斯特黄特色一大片| 悠悠久久av| 欧美一级毛片孕妇| 成人亚洲精品一区在线观看| 老熟妇乱子伦视频在线观看| 久久这里只有精品19| 99精品欧美一区二区三区四区| 老熟妇乱子伦视频在线观看| av片东京热男人的天堂| 成年人免费黄色播放视频| 在线观看免费视频日本深夜| 777米奇影视久久| 国产一区二区三区在线臀色熟女 |