□紀(jì)曉宇
( 華僑大學(xué)管理學(xué)院,福建 泉州 362021)
人們對(duì)泡沫現(xiàn)象的關(guān)注由來已久。蘇格蘭學(xué)者查爾斯·馬凱(1841)在《驚人的幻覺和大眾的瘋狂》一書中,對(duì)1636年荷蘭的“郁金香狂熱”,1719至1720年法國(guó)的“密西西比泡沫”和英國(guó)的“南海泡沫”等著名的泡沫現(xiàn)象進(jìn)行了詳細(xì)的描述和分析,指出大眾不正常的過度投機(jī)心理必然會(huì)引起股價(jià)難以預(yù)料的波動(dòng)。
真正從經(jīng)濟(jì)學(xué)角度對(duì)泡沫現(xiàn)象進(jìn)行研究,始于20世紀(jì)60年代。隨著經(jīng)濟(jì)增長(zhǎng)理論的繁榮,一些學(xué)者對(duì)資本市場(chǎng)的投機(jī)活動(dòng)和泡沫現(xiàn)象進(jìn)行了早期的理論研究。直到80年代,隨著“市場(chǎng)是否有效”這一命題日益深入的研究,關(guān)于資本市場(chǎng)泡沫的問題才開始得到學(xué)者們的重點(diǎn)關(guān)注。
到目前為止,經(jīng)濟(jì)學(xué)界還沒有一個(gè)統(tǒng)一的泡沫定義,也沒有一個(gè)較為明確的量化標(biāo)準(zhǔn)。從經(jīng)濟(jì)學(xué)角度,可以簡(jiǎn)單的解釋為,泡沫是指資產(chǎn)價(jià)格對(duì)基礎(chǔ)價(jià)值的持續(xù)偏離。1996年版的《新帕爾格雷夫經(jīng)濟(jì)學(xué)大辭典》中引用美國(guó)著名經(jīng)濟(jì)學(xué)家金德爾伯格對(duì)泡沫的描述,定義為:“泡沫狀態(tài)(Bubbles)這個(gè)名詞,隨便一點(diǎn)說,就是一種或一系列資產(chǎn)在一個(gè)連續(xù)過程中陡然漲價(jià),開始的價(jià)格上升會(huì)使人們產(chǎn)生還要漲價(jià)的預(yù)期,于是又吸引了新的買主——這些人一般只是想通過買賣謀取利潤(rùn),而對(duì)這些資產(chǎn)本身的使用和產(chǎn)生盈利的能力是不感興趣的。隨著漲價(jià)常常是預(yù)期的逆轉(zhuǎn),接著就是價(jià)格暴跌,最后以金融危機(jī)告終。通常,‘繁榮(Boom)’的時(shí)間要比泡沫狀態(tài)長(zhǎng)些,價(jià)格、生產(chǎn)和利潤(rùn)的上升也比較溫和一些,以后也許接著就是以暴跌(或恐慌)的形式出現(xiàn)的危機(jī),或者以繁榮的逐漸消退告終而不發(fā)生危機(jī)?!边@個(gè)解釋刻畫了泡沫的演變過程——資產(chǎn)價(jià)格暴漲到暴跌;投資者行為——適應(yīng)性預(yù)期、慣性交易策略、從眾心理與羊群行為、投機(jī)、搏傻;形成機(jī)理——價(jià)格波動(dòng)與投資者行為的正反饋;外在條件——(寬裕的資金環(huán)境)使新的買主不斷加入;內(nèi)在特征——投資者脫離基本面的投機(jī)行為使資產(chǎn)價(jià)格嚴(yán)重偏離基礎(chǔ)價(jià)值;泡沫破裂的關(guān)鍵——預(yù)期的逆轉(zhuǎn);以及泡沫破裂的后果——金融危機(jī)。
日本經(jīng)濟(jì)學(xué)者則傾向于將泡沫定義為資產(chǎn)價(jià)格背離經(jīng)濟(jì)基礎(chǔ)條件的膨脹過程。1993年度日本經(jīng)濟(jì)白皮書指出,所謂“泡沫”一般來講是指資產(chǎn)價(jià)格大幅度偏離經(jīng)濟(jì)基礎(chǔ)條件而上升。日本金融學(xué)會(huì)會(huì)長(zhǎng)三木谷良一(1998)認(rèn)為,所謂泡沫經(jīng)濟(jì)就是資產(chǎn)價(jià)格(具體指股票與不動(dòng)產(chǎn)價(jià)格)嚴(yán)重偏離實(shí)體經(jīng)濟(jì)(生產(chǎn)、流通、雇傭和增長(zhǎng)率等)而暴漲,然后暴跌這一過程。
從不同的角度,股市泡沫可以分為不同的類型。Blanchard和Watson從理性預(yù)期出發(fā),將股市泡沫分為理性泡沫和非理性泡沫兩類。理性泡沫是活躍股票市場(chǎng)的必需品,也是虛擬資產(chǎn)交易不可避免的產(chǎn)物;非理性泡沫是指系統(tǒng)的金融風(fēng)險(xiǎn)以及推波助瀾的狂熱,如果急劇膨脹而得不到控制,最終必然破裂而導(dǎo)致股價(jià)急挫,甚至引發(fā)金融危機(jī)。這是理論界對(duì)資產(chǎn)泡沫的首次類別劃分,奠定了資產(chǎn)泡沫類別劃分的基礎(chǔ)。
Hamilton將泡沫分為兩種:確定性泡沫和隨機(jī)性泡沫。在確定性泡沫中,由于所有投資者都認(rèn)為股票會(huì)上漲,因而股價(jià)會(huì)以一定的比率增長(zhǎng),而股價(jià)一旦上漲,投資者都能得到預(yù)期的利潤(rùn),又引起股票的進(jìn)一步上漲。確定性泡沫只不過是一種理論上的特例,人們通常所說的泡沫幾乎都是隨機(jī)性泡沫。
Blanchard和Fisher從泡沫發(fā)展演化的過程出發(fā),將泡沫分為永恒擴(kuò)張型、爆炸型和可消除型三種。永恒擴(kuò)張型泡沫是一種研究中的特例,以無限期界和人的完全理性為假定,通常用來描述泡沫在產(chǎn)生初期能以比較平穩(wěn)的速度逐漸擴(kuò)張,但由于人是有限期界和有限理性的,實(shí)際上這種擴(kuò)張過程不可能持久,隨著泡沫膨脹速度的加快,最終變成爆炸型泡沫。通常情況下,一旦泡沫產(chǎn)生,如果沒有政府干預(yù)或金融政策的變化,泡沫不會(huì)自我消失。所謂的可消除型泡沫,更多意義上是指應(yīng)當(dāng)采取何種措施以消滅已產(chǎn)生的泡沫。
Froot和Obstfeld從泡沫形成原因的角度,將泡沫分為內(nèi)生泡沫和外生泡沫。內(nèi)生泡沫是一種特殊的理性泡沫,其產(chǎn)生僅僅取決于資產(chǎn)價(jià)格基本決定因素,如果基本決定因素給定,那么泡沫將維持不變。相對(duì)于內(nèi)生泡沫,那些由于受到外來因素的影響而產(chǎn)生的泡沫被稱為外生泡沫。
Hahn(1966),Samuelson(1967),Shell和Stiglitz(1967)證明,在缺乏一個(gè)完全的期限是無限的期貨市場(chǎng)條件下,沒有一種市場(chǎng)力量能夠保證經(jīng)濟(jì)不產(chǎn)生泡沫并且破裂。這從理性預(yù)期的角度證明了在某些條件下經(jīng)濟(jì)系統(tǒng)可能產(chǎn)生泡沫并最終破裂。
Flood和Garber(1980)首次引入理性預(yù)期模型作為檢驗(yàn)泡沫的理論基礎(chǔ)。
Blanchard和Watson(1982)從理性預(yù)期出發(fā),將股市泡沫分為理性泡沫和非理性泡沫兩類,建立了一個(gè)動(dòng)態(tài)預(yù)測(cè)模型來討論泡沫經(jīng)濟(jì)的形成過程。以股票價(jià)格理性預(yù)期模型為基礎(chǔ),在套利均衡條件下,求解出了理性泡沫解。
Santoni(1987)提出了理性泡沫的三個(gè)特征,即理性泡沫具有連續(xù)性、連續(xù)膨脹性和非負(fù)性。
Blanchard和Fisher(1989)從泡沫發(fā)展演化的過程出發(fā),將股市泡沫分為三類。
Froot和Obstfeld(1991)提出內(nèi)生泡沫概念,簡(jiǎn)化了實(shí)證檢驗(yàn),并用1900-1998年的標(biāo)準(zhǔn)普爾綜合指數(shù)進(jìn)行實(shí)證研究,指出泡沫能夠用來解釋美國(guó)股市的過度波動(dòng)現(xiàn)象。
Evans(1991)通過修正的Blanchard模型,得到了周期性破裂泡沫。
采用過程性考核與期末考試相結(jié)合。結(jié)構(gòu)力學(xué)(一)是一門實(shí)踐性較強(qiáng)的課程,僅僅通過考試難以達(dá)到考核評(píng)判學(xué)生對(duì)課程知識(shí)的掌握情況,因此考核形式中可采用過程性考核和期末考試相結(jié)合的方式。其中過程性考核主要考核學(xué)生平時(shí)的學(xué)習(xí)表現(xiàn),其包括學(xué)生完成工程模塊任務(wù)的方案、結(jié)果、出勤情況以及溝通協(xié)作精神。而學(xué)期末設(shè)置期末考試,主要考核課程重要知識(shí)點(diǎn)及能力。
Granger和Swanson(1994)通過“一般化隨機(jī)鞅過程模型”求解出的理性泡沫解集。這幾乎囊括了目前常見的所有理性泡沫解,為泡沫的實(shí)證研究作了重要的函數(shù)設(shè)定方面的準(zhǔn)備。
至此,經(jīng)過20多年的發(fā)展,理性泡沫理論已經(jīng)建立了一套相對(duì)成熟的研究體系,以理論為依托的實(shí)證分析方法也日益完善。隨著行為金融學(xué)等其他學(xué)科領(lǐng)域的發(fā)展,以這些新興學(xué)科為依托的股市泡沫理論的研究也得到了長(zhǎng)足的發(fā)展。
Tirole(1982)證明了有限界或有限代理人條件下的泡沫,其中資產(chǎn)價(jià)格是由基本因素衍生出的,這與理性行為不一致。
(1)行為金融學(xué)方面。隨著行為金融學(xué)的發(fā)展,依托人類心理學(xué)研究成果,對(duì)股市泡沫理論的研究日益深入。
Shiller(1984,1990)建立了時(shí)尚模型。Black(1986)首先將噪聲概念引入泡沫理論中,把市場(chǎng)有效性和噪聲結(jié)合起來研究,認(rèn)為噪聲交易者不斷通過交易將噪聲累加到股票價(jià)格中,使股票價(jià)格偏離其內(nèi)在價(jià)值,形成股票泡沫。Delong,Shleirer,Summers和Waldmann(1990a)建立了噪聲交易模型(noise trader model)。
Delong,Shleirer,Summers和Waldmann(1990b)建立了正反饋交易模型(positive feedback trading model)。
Lux(1995)提出的傳染模型,描述了市場(chǎng)上投資者的從眾行為和相互模仿的傳染現(xiàn)象,很好地解釋了股市泡沫的形成和破滅。
Barberis,Shleifer和Vishny(1998)提出了投資者情緒模型(BSV)。
Scheinkman和Wei Xiong (2002)建立了過度自信模型,認(rèn)為過度自信心理導(dǎo)致投資者對(duì)資產(chǎn)的基礎(chǔ)價(jià)格的判斷發(fā)生分歧,導(dǎo)致泡沫產(chǎn)生。
(2)非線性理論方面。Brock和Hommes(1997,1998)引入“適應(yīng)性理性均衡動(dòng)力學(xué)(adaptive rational equilibrium dynamics,ARED)”的概念研究了預(yù)期形成的異質(zhì)性。Hong和Stein(1999)首次利用異質(zhì)信念,建立了反應(yīng)過度和反應(yīng)不足統(tǒng)一模型(HS),利用動(dòng)量交易方式研究了股票價(jià)格持續(xù)偏離基本價(jià)值的現(xiàn)象。之后,Hong和Stein(2003)研究了一個(gè)基于投資者異質(zhì)信念的市場(chǎng)崩潰模型。Barbarino和Jovanovic(2007)從異質(zhì)信念的角度,用Zeira-Rob模型對(duì)股市崩潰進(jìn)行了研究。
(3)金融物理學(xué)方面。近10年來,物理學(xué)者對(duì)金融市場(chǎng)產(chǎn)生了廣泛的興趣,許多學(xué)者利用金融物理學(xué)對(duì)資產(chǎn)泡沫進(jìn)行了研究。
Johanser(2000)運(yùn)用統(tǒng)計(jì)物理學(xué)的旋轉(zhuǎn)模型描述了泡沫的破滅點(diǎn)(critical points),區(qū)分了泡沫的增長(zhǎng)結(jié)束點(diǎn)和泡沫的破滅點(diǎn),證明了泡沫破滅的可預(yù)測(cè)性。
Kapopoulos和Siokis(2005)對(duì)股市崩潰的動(dòng)態(tài)發(fā)展進(jìn)行了研究,認(rèn)為股市崩潰前泡沫的增加就像地震前能量的積聚,如果泡沫能在股市崩潰前不斷消化,則不會(huì)導(dǎo)致股市崩潰,反之如果泡沫不斷增長(zhǎng)而不能釋放,最終會(huì)導(dǎo)致嚴(yán)重的股市崩潰。而崩潰后的證券市場(chǎng)的動(dòng)態(tài)發(fā)展,就像地震后的余震,服從地球物理學(xué)中的古藤堡—里克特規(guī)則。
在研究資產(chǎn)價(jià)格泡沫對(duì)實(shí)體經(jīng)濟(jì)的影響方面,學(xué)術(shù)界存在著爭(zhēng)議,一些結(jié)論認(rèn)為資產(chǎn)泡沫有利于實(shí)體經(jīng)濟(jì)的發(fā)展,一些則截然相反,認(rèn)為資產(chǎn)泡沫阻礙實(shí)體經(jīng)濟(jì)的增長(zhǎng)。
Tirole(1985)和Weil(1987)認(rèn)為,在經(jīng)濟(jì)動(dòng)態(tài)無效的情況下,資產(chǎn)價(jià)格泡沫的存在會(huì)減少過度積累,增加人均消費(fèi),消除經(jīng)濟(jì)的無效性。
Delong,Shleifer,Summers和Waldmann(1990a)通過對(duì)資產(chǎn)價(jià)格泡沫的噪聲交易模型進(jìn)行研究,得出結(jié)論,認(rèn)為資產(chǎn)泡沫能夠創(chuàng)造額外風(fēng)險(xiǎn),增加經(jīng)濟(jì)中的不確定性,減少實(shí)物資本的投資收益,使經(jīng)營(yíng)者更注重短期效益而忽視長(zhǎng)期投資。
Yanagawa和Grossman(1993)利用線性生產(chǎn)技術(shù)和內(nèi)生增長(zhǎng)率的離散世代交疊模型,研究了內(nèi)生增長(zhǎng)經(jīng)濟(jì)中的投機(jī)泡沫,認(rèn)為資產(chǎn)價(jià)格泡沫會(huì)阻礙經(jīng)濟(jì)增長(zhǎng),減少后代財(cái)富。
Futagami和Shibata(1999,2000)進(jìn)一步推廣了上述結(jié)論,在允許內(nèi)在無值資產(chǎn)(intrinsically useless asset)供給增長(zhǎng)率可變的條件下,認(rèn)為只要無值資產(chǎn)供給率在一定范圍之內(nèi),投機(jī)泡沫就會(huì)增加相對(duì)早期出生的各代人的福利,但會(huì)減少后來出生的各代人的福利。
參考文獻(xiàn):
[1]三木谷良一(日),日本泡沫經(jīng)濟(jì)的產(chǎn)生、崩潰與金融改革[J].金融研究,1998.
[2]從實(shí)證角度看中國(guó)股市泡沫形成的基礎(chǔ)或條件[EB/OL].招商證券、招商銀行,2007.1.30,http://www.sinoec.net/hy/finance/advisor/hy_9237.html.
[3]Hahn F. H., 1966, Equilibrium Dynamics with Heteroeneous Capital Goods, The Quarterly Journal of Economics, 80(4), 633-646.
[4]Samuelson P.A., 1967, Indeterminacy of Development in a Heterogeneous Capital Model with Constant Savings Propensity, in Essays on the Theory of Optimal Growth, ed. K.Shell. Cambridge: MIT Press, 219-321.
[5]Shell K., Stigliz J., 1976, The Allocation of Investment in a Dynamic Economy, Quarterly Journal of Economics, 81(4), 592-609.
[6]Flood.R. and P. Garber,1980,Market fundamentals versus Price-Level Bubbles,The First Test,Journal of Political Economy,No.88,pp.745-770.
[7]Blanchard,Olivier and Mark Waston,1982,Bubbles,Rational Expectations and Financial Markets,In Paul Wachtel(ed.),Crises in the Economic and Financial Structure,Lexing MA:Lexington Books.
[8]Santoni,DJ., 1987, The Great Bull Markets 1924-1929 and 1982-1987: Speculative Bubbles or Economic Fundamentals,Review of Federal Rerserve Bank of St. Louis, 69(9):16-30.
[9]Blanchard Olivier and Stanley Fischer,1989,lectures on Macroeconomics,Cambridge MA:MIT Press.
[10]Froot.K and M.Obstfeld,1991,Intrinsic Bubble:The Case of Stock Price American Economic Review,No.81,pp.1189-1214.
[11]Evans,George W,1991,Pitafalls in Testing for Explosive Bubbles in Asset Prices,American Economic Review Sept.81(4),922-30.
[12]Granger C, and N. Swanson,1994,An Introduction to Stochastic Unit Root Process,Working Paper,University of California.
[13]Tirole J., 1982, On the possibility of Speculation under Rational Expectations, Econometrica, Vol .50, pp. 1163-1181.
[14]Shiller.R.,1984,Stock Prices and Social Dynamics,Brookings Papers on Economic Activity,2,457-510.
[15]Black,F(xiàn)isher,1986,Noise,Journal of Finance,41:529-43.
[16]De Long,Bradford,Andrew Sheifer,Lawrence Summers and Robert Waldman,1990a,Noise Trader Risk in Financial Markets,Journal of Political Economy,98:70338.
[17]De Long,Bradford,Andrew Sheifer,Lawrence Summers and Robert Waldman,1990b,Positive Feedback Investment Stratgies and Destabilizing Rational Speculation,Journal of Finance,45:379-95.
[18]Lux T., 1995, Herd Behavior, Bubbles and Crashes, The Economic Journal, 105(431),881-896.
[19]Barberis,Nicholas,Andrei Shleifer and Robert Vishny,1998,A Model of Investor Sentiment,NBER working paper,No.5926,Washington DC.
[20]Jose Scheinkman, and Wei Xiong, 2004, Asset Float and Speculative Bubbles, Working Paper August 19, 2004.
[21]Brock W. and Hommes C., 1997, A Rational Route to Randomness, Econometrica 65, 1059-1095.
[22]Hong H., Stein, J.C., 1999, A unified theory of underreaction, momentum trading, and overreaction in asset markets, Journal of Finance, Vol. 54.
[23]Hong H., Stein, J.C., 2003, Differences of Opinion, Short-Sales Constraints, and Market. Crashes, Review of Financial Studies,16(2),487-525.
[24]Barbarino A., and Jovanovic B., 2007, Shakeouts and market Crashes, International Economic Review, vol. 48.
[25]Johansen A., Ledoit O., Sormette D., 2000, Crashes as Critical Points, International Journal of Theoretical and Applied Finance, 3(2),219-255.
[26]Kapopoulos P., and Siokis F., 2005, Stock market crashes and dynamics of aftershocks, Economics Letters, Vol. 89.
[27]Tirole. J., 1985, Asset Bubbles and Overlapping Generations,Econometrica, 53, 1499-1528.
[28]Weil Philippe, 1987, Confidence and the Real Value of Money in an Overlapping Generations Economy, Quarterly Journal of Economics, 102: 122.
[29]Yanagawa N., GrossMan G.M., 1993, Asset Bubbles and Endogenous Growth, Journal of Monetary Economics, 31(1),3-19.
[30]Futagami K., Shibata A., 1999, Welfare Effects of Bubbles in an Endogenous Growth Model, Research in Economics, 53(4): 381-403.