• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Analytical Solution of Chatter Stability for T-slot Milling

    2010-03-01 01:47:06LIZhongqunandLIUQiang

    LI Zhongqun and LIU Qiang

    1 School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412008, China

    2 School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China

    1 Introduction

    Modeling and prediction of the stability in cutting process have been a focus area of manufacturing research since the pioneering chatter stability theories of Tlusty and Tobias during 1950’s[1–2]. Recently, the dynamic models of chatter stability in high speed machining(HSM), complex milling process such as plunge milling and different variety of end milling cutters have been developed and evaluated in the laboratory and industrial applications[3–5]. The main efforts of chatter vibration research are focused on the cutting force prediction, dynamic cutting coefficients identification, tool-spindle interfaces dynamics, HSM chatter avoidance, and stability lobes diagram(SLD) for various machining operations. There have been significant achievements on the chatter vibration research and applications during recent decades.

    Chatter is an unstable vibration due to dynamic interactions between the cutting tool and workpiece. Under certain conditions, the amplitude of vibrations grows and the cutting system becomes unstable. TOBIAS[1]began the study of machining chatter with establishment of the basis of the regenerative chatter theory. In the early milling stability analysis, KOENIGSBERGER, et al[2], used the orthogonal chatter model considering an average direction and average number of teeth in cut. SRIDHAR, et al[3],firstly introduced the time-varying directional cutting force coefficients in modeling the chatter stability of milling.MINIS, et al[4], formulated and numerically solved the milling stability using the Nyquist criterion. BUDAK[5]presented and verified an analytical determination of stability limits, which has been applied to the stability of ball-end milling[6–8], and extended to 3D milling[9].

    T-slot milling has found applications in aerospace,automotive and die machining industry. When applying a long and slender T-slot cutter to the milling process, the chatter vibration of the cutting process will lead to the poor surface finish, lower productivity and decreased tool life.However, there has been limited literature for the T-slot milling process[10].

    Generally, a T-slot cutter can be regarded as a special case of inserted cutters. ENGIN, et al[11], presented a generalized mathematical model of inserted cutters for predication of cutting forces, vibrations and stability lobes in milling. Based on the model, CutPro?, developed in Manufacturing Automation Laboratory, can provide stability simulation for the inserted cutters. However,provides the classical SLD on the axial depth of cut, but it cannot provide the SLD on the radial depth of cut,which is more meaningful in T-slot milling operations.

    Therefore, a dynamic model and its analytical solution of T-slot milling are presented in this paper. Originally based on the analytical milling stability model of BUDAK, the geometric features and milling operation of T-slot cutter are considered in modeling and analysis. In addition, the SLD on the radial depth of cut are developed theoretically and verified experimentally.

    The paper is organized as follows. In section 2, the dynamic model of T-slot milling are presented and solved analytically. The stability lobes calculation and simulation on the radial depth of cut are discussed in section 3. The comparisons between theoretical and experimental results are given in section 4, followed by the conclusions.

    2 Dynamics of T-slot Milling

    As shown in Fig. 1, the T-slot cutter is made up of two rows of uniform-spaced inserts with the bottom surface of the cutter as the reference of the lower row inserts, and the top surface of the cutter as the reference of the upper row inserts. The inserts of upper row cut by using the top and side edges with the negative lead angles, and the inserts of lower row cut by using the bottom and side edges with the positive lead angles. The geometry above is the significant features different from other general insert end mill cutter.

    Fig. 1. 3D digital model of a 6-flute T-slot cutter

    2.1 Dynamic cutting forces of T-slot milling

    Using the same principle of dynamic modeling of a flat end mill[5], a T-slot milling process with N-insert cutter can also be reduced to a 2-DOF vibration system in two orthogonal directions. The dynamics of the milling system can be given by the differential equations as follows:

    where m, c, k are the mass, damping ratio and stiffness of the machine tool in the directions of x and y, respectively.Fxj, Fyjare the components of the cutting force applied on the jth tooth of the cutter in the directions of x and y.

    The geometrical model of a T-slot cutter with 6 flutes is shown in Fig. 2. By slicing the cutting edges into M disks along the axial direction, the radial immersion angle at the lth plate on the jth cutting edge can be expressed as

    where φ10is the angular displacement at the bottom of the first tooth, φpis the pitch angle and φp= 2π/N, dz is the height of each disk, Lfis the overall height of the cutting edge, δ1, δ2are the lead angle and axial rake angle of the inserts, respectively, and R is the radius of the cutter.

    Fig. 2. Geometry of an insert of 6-flute T-slot cutter

    By applying the linear-edge model[5]to each disk,through coordinate transformation, numerical integration along the axial direction and summation for the differential cutting forces of all the teeth, the overall instantaneous cutting forces acting on the whole cutter in the feed and normal directions can be expressed as follows:

    where g(φjl) is a unit step function used to define whether the differential cutting edge is in or out of cut. Ktcand Krcare the tangential and radial cutting force coefficients,respectively. Δx, Δy are the dynamic displacement variation of the cutter and workpiece between the current and the previous tooth passes in the x and y directions, respectively.In matrix form, the above equations can be rewritten as follows:

    where apis the axial depth of cut. Suppose Fr= Krc/ Ktc, the directional cutting force coefficients are given as follows:

    The directional coefficients depend on the angular position of the cutter makes Eq. (4) time-varying as follows:

    where A(t) is periodic at the tooth passing frequency ω=Nn/60, and n is the spindle speed. In general, Fourier series expansion of the periodic term is used for solution of the periodic systems. However, in chatter stability analysis,the inclusion of the higher harmonics in the solution may not be required for most cases as the response at the chatter limit is usually dominated with a single chatter frequency.Starting from this idea, Refs. [5–7] confirm that the higher harmonics do not affect the accuracy of the predictions unless the radial depth of cut is extremely small compared to the diameter of the cutting tool. Thus, it is sufficient to include only the average term in the Fourier series expansion of A(t), and the average directional cutting force coefficients take the following form:

    where O is the discretized points number within a tool revolution. Substituting Eq. (7) into Eq. (6), we can obtain

    2.2 Analytical solution of chatter stability for T-slot milling

    In Eq. (8), A0does not vary with the time anymore and depends only on the immersion angle. The vibrations Δ(iω)are expressed in terms of the dynamic cutting forces F(iω)and the transfer function of the tool-workpiece engagement G(iω) as

    The transfer function G(iω) can be given as

    The dynamic cutting forces at chatter frequency ωcare obtained by substituting Eq. (9) into Eq. (8):

    The stability turns into an eigenvalue problem, and it has a nontrivial solution only if its determinant is zero[5]as follows:

    where G0=A0G is the oriented transfer function matrix, and the eigenvalue of the characteristic equation is

    If the cross transfer functions are neglected, the analytical solution of the eigen-value can be obtained as

    where a0=Gxx(iωc)Gyy(iωc)(αxxαyy?αxyαyx), a1=αxxGxx(iωc)?αyyGyy(iωc). By scanning the chatter frequency ωc, the critical depth of cut alimand the spindle speed n can be derived from the real and imaginary parts of the eigenvalues ΛI(xiàn), ΛRas follows:

    where k is an integer corresponding to the number of vibration wave during a tooth period.

    Therefore, for the given geometry of a T-slot cutter, the tool/part specific cutting forces, the transfer functions of the milling system and the chatter frequency ωc, ΛRand ΛI(xiàn)can be obtained by Eq. (14), and can be used in Eq. (15) to determine the stability limits aplimand the spindle speed n.When these procedures are repeated for the range of chatter frequency and vibration wave k, the stability lobes diagram of a T-slot milling system can be obtained.

    3 Calculation of SLD on Radial Depth of Cut

    The above-mentioned SLD on the axial depth of cut is useful in determining the chatter-free cutting conditions of an ordinary end mill. However, for a T-slot cutter, as the full length of its cutting edges has to be used in cutting process in some occasions, the SLD on the radial depth of cut should also be derived. The schematic diagram of obtaining this kind of SLD is shown in Fig. 3 and the procedures are as follows.

    (1) To set the initial radial depth of cut ae= ae0and its increment Δae.

    (2) To obtain the data of stability lobes under the given radial depth of cut ae. The data is represented by a two-dimensional array. It has two columns, the first one is the spindle speed, and the second one is the corresponding critical axial depth of cut.

    (3) To let ae= ae+ Δaeand if ae≤2R, go back to (2).

    (4) To interpolate with the simulated data to obtain the critical radial depth of cut for each axial depth of cut under the specified spindle speed.

    (5) To increase the spindle speed and repeat (4) until it reaches the upper limit of the simulation spindle speed.

    (6) To draw a figure with the spindle speed n as independent variable and the critical radial depth of cut aplimas dependent variable to obtain the SLD under the specified axial depth of cut.

    Fig. 3. Schematic diagram of obtaining SLD on the radial depth of cut for T-slot milling

    Using the analytical solution of chatter stability for T-slot milling, a Matlab-based simulation model was developed,which gathers the input data of cutting conditions, machine tool characteristics, workpiece material, tool geometry, and other related parameters in T-slot milling. The simulation interface is developed using the GUIDE of Matlab, and shown in Fig. 4.

    Fig. 4. Interface of chatter stability simulation of T-slot milling

    4 Experimental Verification and Discussion

    Verification tests were conducted on a 5-axis vertical machining center JO’MACH143. The maximal spindle speed of the machine is 6 000 r/min. The cutting tool used is a 6-flute carbide solid T-slot cutter, the geometrical parameters of which are shown in Table 1. The material of the workpiece is Al7075/T6, the cutting force coefficients obtained by identification tests are Ktc=796.0 N/mm2,Krc=168.0 N/mm2.

    Table 1. T-slot cutter used in the verification tests

    The test system includes a Kistler 9722A500 impact hammer, sensitivity 10 mV/N, 500 N and a frequency range of 1–8 kHz; a Kistler 8775A50 accelerator, low impedance,sensitivity 100 mV/g, 50 g and a frequency range of 1–7 kHz; a National Instruments USB 9233 24-bit combined DAQ-Signal Conditioning unit; a Shure microphone; a tap testing software module CutPro? MALTF, a dynamic simulation Module for milling CutPro? Advanced Milling.

    Hammer tests were conducted in both the feed (x) and the normal direction (y) to get the frequency response functions in these two directions. The obtained FRFs are shown in Fig. 5. The modal parameters of the milling system obtained by the Modal Analysis Module ofare listed in Table 2.

    Fig. 5. Measured FRFs of the cutter

    Table 2. Modal parameters of the machining system

    To validate the presented analytical solution of stability limits for T-slot milling, the simulation result from this model was compared to that from CutPro?. As the SLD on the radial depth of cut cannot be obtained in CutPro?, only the SLD on the axial depth of cut was compared, which is shown in Fig. 6. The figure shows that the SLD from these two models are in good agreement in general, and the small discrepancy may be attributed to the different algorithms applied.

    Fig. 6. SLD from T-slot milling model with that from CutPro?

    The SLD on the radial depth of cut under full axial depth of cut (ap=20.0 mm) is predicated with the abovementioned program model and shown in Fig. 7. The experimental SLD was plotted in spindle speed increment of 400 r/min from 2 500 r/min to 5 700 r/min. Chatter was recorded using a Shure microphone and identified using fast Fourier transform(FFT). Results of chatter tests are also plotted in the same figure, which are in good agreement with the predictions.

    Fig. 7. Experimental and predicated SLD

    To reveal the time-domain properties of different points on the chatter stability lobes diagram, according to the method presented by author’s previous work[12], the dynamic simulations in the time-domain were conducted under cutting conditions corresponding to points A and B in Fig. 7. Point A is located in the chatter region, the spindle speed is 3 600 r/min, and the radial depth of cut is 1.5 mm.Point B is located in the stable region, the spindle speed is 4 450 r/min, and the radial depth of cut is 1.7 mm. In both cases, the feedrate is set as 2 000 mm/min. The tool’s vibration in x direction and its FFT are shown in Fig. 8 and Fig. 9, respectively.

    Fig. 8. Tool vibrations in x direction

    Fig. 9. FFT of tool vibrations in x direction between A and B

    The vibration of the cutter in x direction shows that the milling process corresponding to point B is stable but that corresponding to point A is unstable. FFT of the simulated vibration of cutter in x direction shows that when milling under the cutting conditions corresponding to point B, the energy is almost concentrated at the tooth passing frequency (435 Hz) and its harmonics. However, when milling under the cutting conditions corresponding to point A, the energy is not all concentrated at the harmonics of the tooth passing frequency (360 Hz). The chatter is occurred at the frequency of 1 200 Hz which is around the natural frequency of the milling system.

    5 Conclusions

    (1) Based on the geometrical model of a T-slot cutter, the dynamic cutting force is modeled, in which a numerical method is employed to calculate the average directional cutting force coefficients which lead to an analytical solution of the chatter stability for T-slot milling.

    (2) In order to determine the cutting conditions of T-slot milling, the stability lobes diagram is derived not only on the axial depth of cut but also on the radial depth of cut.

    (3) The agreement of simulation result from T-slot model with that from CutPro?, as well as the agreement of predicated SLD with the experimental one has verified the proposed T-slot milling model.

    (4) High efficient and chatter-free T-slot milling can be achieved with the cutting conditions determined by the SLD from the simulation model of T-slot milling.

    Reference

    [1] TOBIAS S A. Machine tool vibration[M]. London: Blackie and Sons, 1965.

    [2] KOENIGSBERGER F, TLUSTY J. Machine tool structures[M].Oxford: Pergamon Press, 1967.

    [3] SRIDHAR R, HOHN R E, LONG G W. General formulation of the milling process equation[J]. Transactions of ASME, Journal of Engineering for Industry, 1968, 90: 317–324.

    [4] MINIS I, YANUSHEVSKY R, TEMBO A. Analysis of linear and nonlinear chatter in milling[J]. Annals of the CIRP, 1990, 39(1):459–462.

    [5] BUDAK E. The mechanics and dynamics of milling thin-walled structures[D]. Vancouver: University of British Columbia, 1994.

    [6] ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling[J]. Annals of the CIRP, 1995, 44(1): 357–362.

    [7] BUDAK E, Altintas Y. Analytical prediction of chatter stability in milling—part I: general formulation; part II: application to common milling systems[J]. Transactions of ASME, Journal of Dynamic Systems, Measurement, and Control, 1998, 120: 22–36.

    [8] ALTINTAS Y, SHAMOTO E, LEE P, et al. Analytical prediction of stability lobes in ball-end-milling[J]. Transactions of ASME,Journal of Manufacturing Science and Engineering, 1999, 121:586–592.

    [9] ALTINTAS Y. Analytical prediction of three dimensional chatter stability in milling[J]. Japan Society of Mechanical Engineers,International Journal Series: Mechanical Systems, Machine Elements and Manufacturing, 2001, 44(3): 717–723.

    [10] LI Zhongqun, ZHANG Shangxian. Cutting force modeling and simulation of tee slot milling[C]//Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation,Changchun, China, August 9–12, 2009: 1 438–1 443.

    [11] ENGIN S, ALTINTAS Y. Mechanics and dynamics of general milling cutters. Part II: inserted cutters[J]. International Journal of Machine Tools & Manufacture, 2001, 41: 2 213–2 231.

    [12] LI Zhongqun, LIU Qiang. Solution and analysis of chatter stability for end milling in the time-domain[J]. Chinese Journal of Aeronautics, 2008, 21: 169–178.

    [13] LI Zhongqun. Dynamic simulation and cutting conditions optimization of Tee slot milling based on CutPro software[J]. Key Engineering Materials, 2009, 407–408: 589–593.

    99久久精品热视频| 成人鲁丝片一二三区免费| 国产高清三级在线| 久久香蕉精品热| 18禁黄网站禁片免费观看直播| 哪里可以看免费的av片| 成人性生交大片免费视频hd| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 一进一出好大好爽视频| a级毛片在线看网站| 成年女人毛片免费观看观看9| 国产av麻豆久久久久久久| 国产亚洲av高清不卡| 男人舔女人下体高潮全视频| cao死你这个sao货| 成年女人毛片免费观看观看9| 国产熟女xx| 人妻夜夜爽99麻豆av| 欧美午夜高清在线| 99久久无色码亚洲精品果冻| 99热这里只有精品一区 | 91字幕亚洲| 男女下面进入的视频免费午夜| 免费av毛片视频| 99国产精品一区二区蜜桃av| 亚洲精品乱码久久久v下载方式 | 五月伊人婷婷丁香| 观看美女的网站| aaaaa片日本免费| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 国产高清激情床上av| 狠狠狠狠99中文字幕| 美女高潮的动态| 欧美高清成人免费视频www| 久久久久久九九精品二区国产| 88av欧美| 久99久视频精品免费| 夜夜躁狠狠躁天天躁| 日韩中文字幕欧美一区二区| 国产成年人精品一区二区| 成人无遮挡网站| 亚洲国产中文字幕在线视频| 亚洲国产欧美网| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 搡老妇女老女人老熟妇| 亚洲aⅴ乱码一区二区在线播放| 国产精品 国内视频| 青草久久国产| 精品熟女少妇八av免费久了| 国产亚洲欧美98| 亚洲第一欧美日韩一区二区三区| 级片在线观看| 少妇的逼水好多| 老熟妇乱子伦视频在线观看| 1000部很黄的大片| 国产精品一及| 午夜福利在线观看吧| 亚洲国产精品久久男人天堂| h日本视频在线播放| 最新中文字幕久久久久 | 在线播放国产精品三级| 国产99白浆流出| 97超视频在线观看视频| 一本久久中文字幕| 日日夜夜操网爽| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 18禁国产床啪视频网站| 欧美日韩一级在线毛片| 一本综合久久免费| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 在线永久观看黄色视频| 这个男人来自地球电影免费观看| 99热精品在线国产| 国产av在哪里看| 色综合站精品国产| 久99久视频精品免费| 色综合婷婷激情| 亚洲成人精品中文字幕电影| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 99国产精品99久久久久| 男人舔女人的私密视频| 听说在线观看完整版免费高清| x7x7x7水蜜桃| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 日本a在线网址| 免费看日本二区| 一个人看视频在线观看www免费 | 免费搜索国产男女视频| 两个人看的免费小视频| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| 久久精品国产99精品国产亚洲性色| 欧美乱色亚洲激情| 欧美午夜高清在线| 午夜激情福利司机影院| 超碰成人久久| 美女黄网站色视频| 国产成人av教育| 99久久99久久久精品蜜桃| 午夜影院日韩av| 日韩欧美免费精品| 人妻久久中文字幕网| 一个人看的www免费观看视频| 99久久精品热视频| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 午夜福利18| 日日干狠狠操夜夜爽| 成人三级做爰电影| 中文亚洲av片在线观看爽| 国产精品免费一区二区三区在线| а√天堂www在线а√下载| 两人在一起打扑克的视频| 真实男女啪啪啪动态图| 欧美激情久久久久久爽电影| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 成人鲁丝片一二三区免费| 国语自产精品视频在线第100页| 黄色女人牲交| 99久久国产精品久久久| 国产精品一区二区三区四区免费观看 | 久久精品夜夜夜夜夜久久蜜豆| 欧美黑人巨大hd| 一本精品99久久精品77| 精品人妻1区二区| 搡老妇女老女人老熟妇| 久久久精品大字幕| www日本黄色视频网| 亚洲国产欧美一区二区综合| 丁香六月欧美| 亚洲国产看品久久| 国产亚洲精品久久久com| 丁香六月欧美| 国产精品av视频在线免费观看| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 午夜福利在线观看免费完整高清在 | 夜夜看夜夜爽夜夜摸| 免费观看的影片在线观看| 色av中文字幕| 免费在线观看影片大全网站| 狠狠狠狠99中文字幕| 国产aⅴ精品一区二区三区波| 日韩欧美 国产精品| 免费观看人在逋| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| 黄频高清免费视频| 国产久久久一区二区三区| 不卡一级毛片| cao死你这个sao货| 99久久精品一区二区三区| 日本免费一区二区三区高清不卡| 色吧在线观看| 69av精品久久久久久| 久久精品91无色码中文字幕| 亚洲欧美激情综合另类| 淫妇啪啪啪对白视频| 欧美激情久久久久久爽电影| 日韩欧美国产一区二区入口| 深夜精品福利| 亚洲国产欧美一区二区综合| 成年免费大片在线观看| 国产激情欧美一区二区| 久久国产精品影院| 97人妻精品一区二区三区麻豆| 麻豆国产97在线/欧美| 丝袜人妻中文字幕| 成人三级做爰电影| 亚洲国产精品合色在线| 国产精品九九99| 婷婷丁香在线五月| 我的老师免费观看完整版| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 国产真人三级小视频在线观看| a在线观看视频网站| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| 欧美极品一区二区三区四区| 大型黄色视频在线免费观看| 这个男人来自地球电影免费观看| 欧美乱色亚洲激情| 国产精品九九99| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看午夜福利视频| 无限看片的www在线观看| 他把我摸到了高潮在线观看| 日韩有码中文字幕| 麻豆成人av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 国产av在哪里看| 日韩高清综合在线| 免费在线观看视频国产中文字幕亚洲| 床上黄色一级片| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| 久久中文字幕一级| 可以在线观看毛片的网站| 丁香欧美五月| 国产美女午夜福利| 国产精品亚洲一级av第二区| 性色av乱码一区二区三区2| 男女那种视频在线观看| 国产主播在线观看一区二区| 色视频www国产| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 天堂av国产一区二区熟女人妻| 午夜福利欧美成人| 日本黄色片子视频| 国产一区二区三区视频了| 香蕉丝袜av| 淫妇啪啪啪对白视频| 五月伊人婷婷丁香| 在线看三级毛片| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 国产精品亚洲美女久久久| 亚洲av美国av| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 久久精品国产清高在天天线| 久久久久国产一级毛片高清牌| 国产精品综合久久久久久久免费| 亚洲五月婷婷丁香| 免费av不卡在线播放| 久久久久久大精品| 天堂网av新在线| 少妇丰满av| 免费在线观看成人毛片| 999精品在线视频| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 久久国产乱子伦精品免费另类| 后天国语完整版免费观看| 岛国在线观看网站| 俄罗斯特黄特色一大片| 小蜜桃在线观看免费完整版高清| 中文字幕人妻丝袜一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲乱码一区二区免费版| 青草久久国产| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 丁香六月欧美| 哪里可以看免费的av片| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 一进一出抽搐动态| av在线蜜桃| 99国产精品一区二区蜜桃av| 亚洲在线观看片| 男人舔女人的私密视频| 嫁个100分男人电影在线观看| 久久久精品大字幕| av国产免费在线观看| 中文字幕精品亚洲无线码一区| 成人特级黄色片久久久久久久| 亚洲av第一区精品v没综合| 看黄色毛片网站| 精品乱码久久久久久99久播| 制服人妻中文乱码| 草草在线视频免费看| 两人在一起打扑克的视频| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 亚洲最大成人中文| 91在线精品国自产拍蜜月 | 久久精品人妻少妇| 日韩有码中文字幕| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 小说图片视频综合网站| 中国美女看黄片| 又黄又粗又硬又大视频| 嫩草影院精品99| 亚洲在线观看片| 免费av毛片视频| 精品日产1卡2卡| 午夜免费成人在线视频| 亚洲人成伊人成综合网2020| 国产爱豆传媒在线观看| 欧美成狂野欧美在线观看| av福利片在线观看| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲| 久久中文字幕一级| 伦理电影免费视频| 久久精品夜夜夜夜夜久久蜜豆| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 午夜激情欧美在线| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 一级黄色大片毛片| 免费搜索国产男女视频| h日本视频在线播放| 日本免费a在线| 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 日日夜夜操网爽| 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 国产精品,欧美在线| 亚洲国产中文字幕在线视频| 一区福利在线观看| 精品久久久久久成人av| 国产主播在线观看一区二区| 欧美国产日韩亚洲一区| 国产高清激情床上av| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 婷婷丁香在线五月| 国产不卡一卡二| 热99re8久久精品国产| 国产精品一区二区三区四区免费观看 | 国产精品 欧美亚洲| 成人av一区二区三区在线看| 亚洲七黄色美女视频| 国产高清三级在线| 国产男靠女视频免费网站| 99riav亚洲国产免费| 亚洲国产欧美网| 男女下面进入的视频免费午夜| 男插女下体视频免费在线播放| 中文字幕高清在线视频| 少妇人妻一区二区三区视频| 国产精品久久视频播放| 人人妻人人看人人澡| 色噜噜av男人的天堂激情| 精品一区二区三区视频在线 | 国产精品一区二区三区四区免费观看 | 一级毛片高清免费大全| 国产不卡一卡二| 狂野欧美白嫩少妇大欣赏| 999久久久精品免费观看国产| 午夜福利视频1000在线观看| 99视频精品全部免费 在线 | 久久人人精品亚洲av| 亚洲欧美激情综合另类| 久久久国产欧美日韩av| 免费在线观看成人毛片| 亚洲美女黄片视频| 精品日产1卡2卡| 啦啦啦免费观看视频1| 欧美黄色淫秽网站| 99re在线观看精品视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品sss在线观看| 国产97色在线日韩免费| 国产一区在线观看成人免费| 成人亚洲精品av一区二区| 国产不卡一卡二| 欧美成人免费av一区二区三区| 国产精品久久久av美女十八| 成人三级做爰电影| 九九久久精品国产亚洲av麻豆 | 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 99国产极品粉嫩在线观看| 18禁黄网站禁片午夜丰满| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 精品久久久久久,| 夜夜夜夜夜久久久久| 亚洲精品在线观看二区| 国产亚洲欧美98| 少妇人妻一区二区三区视频| 美女扒开内裤让男人捅视频| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产成年人精品一区二区| 天堂网av新在线| 床上黄色一级片| 看片在线看免费视频| 国产三级黄色录像| 在线国产一区二区在线| 18禁美女被吸乳视频| 一个人看视频在线观看www免费 | 国产高清videossex| 久久99热这里只有精品18| 伦理电影免费视频| 波多野结衣高清作品| 成人欧美大片| 久久中文字幕人妻熟女| 亚洲最大成人中文| 午夜福利在线观看吧| 国产视频一区二区在线看| 久久午夜亚洲精品久久| 日韩人妻高清精品专区| 国产97色在线日韩免费| 久久亚洲精品不卡| 黑人欧美特级aaaaaa片| 麻豆国产97在线/欧美| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站 | 午夜成年电影在线免费观看| 国产伦精品一区二区三区视频9 | 色综合婷婷激情| 免费看美女性在线毛片视频| www日本在线高清视频| 欧美在线一区亚洲| 精品不卡国产一区二区三区| 精品欧美国产一区二区三| 日韩免费av在线播放| 99久久精品国产亚洲精品| 少妇人妻一区二区三区视频| 高清在线国产一区| 国产av不卡久久| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 黄色成人免费大全| 青草久久国产| 欧美又色又爽又黄视频| 精品久久蜜臀av无| 国产精品久久久人人做人人爽| 国产高清三级在线| or卡值多少钱| 亚洲午夜精品一区,二区,三区| 嫩草影院入口| 1000部很黄的大片| 欧美3d第一页| 他把我摸到了高潮在线观看| 可以在线观看毛片的网站| 嫩草影院精品99| 欧美激情久久久久久爽电影| 男人的好看免费观看在线视频| av在线蜜桃| 欧美色欧美亚洲另类二区| 国产成人系列免费观看| 国产 一区 欧美 日韩| 中文字幕人妻丝袜一区二区| 国产亚洲精品av在线| 51午夜福利影视在线观看| 在线a可以看的网站| 欧美色视频一区免费| 伊人久久大香线蕉亚洲五| 99久久精品国产亚洲精品| 国产精品 欧美亚洲| 久久亚洲精品不卡| 脱女人内裤的视频| 亚洲九九香蕉| 精品不卡国产一区二区三区| 熟女人妻精品中文字幕| www日本黄色视频网| 中文字幕最新亚洲高清| 国产一区二区在线av高清观看| 人人妻人人看人人澡| 99国产精品一区二区蜜桃av| 精品一区二区三区视频在线观看免费| aaaaa片日本免费| av欧美777| 亚洲在线自拍视频| 国内毛片毛片毛片毛片毛片| av天堂中文字幕网| 午夜精品久久久久久毛片777| 嫩草影视91久久| 午夜福利成人在线免费观看| 免费电影在线观看免费观看| 亚洲av成人一区二区三| 亚洲欧美日韩卡通动漫| 老汉色∧v一级毛片| 免费在线观看亚洲国产| 亚洲美女视频黄频| cao死你这个sao货| 悠悠久久av| 美女高潮的动态| 国产欧美日韩一区二区三| 中文字幕久久专区| 日本a在线网址| 中文亚洲av片在线观看爽| 三级毛片av免费| 国产精品久久久av美女十八| 黑人欧美特级aaaaaa片| 99国产综合亚洲精品| av天堂中文字幕网| 午夜激情福利司机影院| 日本 av在线| 人妻丰满熟妇av一区二区三区| 综合色av麻豆| 亚洲色图av天堂| 精品一区二区三区视频在线 | 国产伦人伦偷精品视频| 国产精品久久久久久久电影 | 99久久99久久久精品蜜桃| 欧美在线一区亚洲| 一区二区三区高清视频在线| 成人三级做爰电影| 国产av不卡久久| 在线十欧美十亚洲十日本专区| 两性夫妻黄色片| 国产三级在线视频| 久久国产精品人妻蜜桃| or卡值多少钱| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| 99re在线观看精品视频| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 日本熟妇午夜| 亚洲欧美日韩高清专用| 欧美av亚洲av综合av国产av| 国产综合懂色| 91av网站免费观看| 精品国产亚洲在线| 免费看日本二区| 五月玫瑰六月丁香| 日本熟妇午夜| 国产淫片久久久久久久久 | 日韩精品中文字幕看吧| 麻豆成人午夜福利视频| 国产又色又爽无遮挡免费看| 怎么达到女性高潮| 最近最新中文字幕大全免费视频| 不卡一级毛片| 亚洲欧美精品综合久久99| 亚洲精品色激情综合| 久久精品国产综合久久久| 18禁裸乳无遮挡免费网站照片| 日本免费一区二区三区高清不卡| www.精华液| 久久久久久大精品| 麻豆成人av在线观看| 欧美色欧美亚洲另类二区| 午夜免费观看网址| 国产精品亚洲美女久久久| 午夜福利视频1000在线观看| 国产精品久久久av美女十八| 啦啦啦韩国在线观看视频| av视频在线观看入口| 欧美一区二区精品小视频在线| 欧美极品一区二区三区四区| 亚洲国产欧美人成| 小说图片视频综合网站| e午夜精品久久久久久久| 国产精品,欧美在线| 国产伦在线观看视频一区| 成年人黄色毛片网站| 在线视频色国产色| 国产激情欧美一区二区| 最近最新免费中文字幕在线| 国产精品影院久久| 日本一本二区三区精品| 亚洲欧美一区二区三区黑人| 久久久久久九九精品二区国产| 亚洲国产中文字幕在线视频| 国产一区二区三区在线臀色熟女| 国产亚洲av高清不卡| 女人被狂操c到高潮| 亚洲精品美女久久av网站| www日本在线高清视频| 国产精品美女特级片免费视频播放器 | 一级作爱视频免费观看| 国产一区二区在线观看日韩 | 在线十欧美十亚洲十日本专区| av女优亚洲男人天堂 | 丁香六月欧美| 久久精品91无色码中文字幕| 午夜福利18| 亚洲 欧美一区二区三区| 夜夜爽天天搞| 久久久久亚洲av毛片大全| 国产高清videossex| 少妇裸体淫交视频免费看高清| 国内精品美女久久久久久| 亚洲国产中文字幕在线视频| 黄色视频,在线免费观看| 成年女人看的毛片在线观看| 中出人妻视频一区二区| 亚洲精品美女久久av网站| 亚洲欧美精品综合一区二区三区| 一本久久中文字幕| 亚洲av成人不卡在线观看播放网| 久久久国产成人精品二区| 一本综合久久免费| av国产免费在线观看| 校园春色视频在线观看| 国产又色又爽无遮挡免费看| 成人亚洲精品av一区二区| 国产蜜桃级精品一区二区三区| 99久久精品一区二区三区| 91久久精品国产一区二区成人 | 99热精品在线国产| 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片| 午夜激情欧美在线| 久久99热这里只有精品18| 真人做人爱边吃奶动态| 久久久国产精品麻豆| 成人高潮视频无遮挡免费网站| 男人和女人高潮做爰伦理| 欧美又色又爽又黄视频|