• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Research on Performance Prediction for Centrifugal Pumps

    2010-03-01 01:46:54TANMinggaoYUANShouqiLIUHoulinWANGYongandWANGKai

    TAN Minggao, YUAN Shouqi, LIU Houlin, WANG Yong, and WANG Kai

    Technology and Research Center of Fluid Machinery Engineering, Jiangsu University, Zhenjiang 212013, China

    1 Introduction

    Pump performance is decided by inner flow characteristics and inner flow analysis is undoubtedly the best method to improve performance of pump. Therefore,in order to predict performance of pumps exactly on theory,flow field in pump must be obtained correctly[1]. Over the past few years, with the rapid development of the computer technology and computational fluid dynamics(CFD),numerical simulation, like academic analysis and experimental research, has become an important tool to study flow field in pumps and predict pump performance home and abroad. An unsteady simulation of a low specific speed centrifugal pump was done by JOSé, et al[2–3]based on FLUENT to predict the dynamic characteristic between impeller and volute and the pump performance, and the research was validated by the experiment data. Using commercial code FINE/Turbo, BYSKOV, et al[4], did a large eddy simulation of a centrifugal pump at design flow rate and off design flow rates to predict the pump characteristics, and the predicted results agreed well with the data measured by particle image velocimetry(PIV) and laser Doppler velocimetry(LDV)[5]. In China, to forecast performance, ZHAO, et al[6], did a coupled impeller-volute simulation of flow in a centrifugal pump using moving reference frame and FUENT, and CHEN, et al[7], simulated the unsteady flow in a single channel pump, both results above were consistent with pump test data.

    The previously mentioned achievements on performance prediction of centrifugal pumps by numerical simulation methods are quite encouraging and these methods are becoming more widely used in hydraulic design of pumps.However, most of the researches were only concerned with one pump and there was no characteristic prediction model in the former study. The more key problems are how to dispose the gap between impeller and volute and how to consider the effect of grid number. So the former research results are not representational and universal. The objective of this paper is to evaluate the precision of numerical prediction method in detail. Hence, six typical centrifugal pumps were chosen as research models and FLUENT was used to do the pumps simulation at the conditions of design,small and large flow rate. The standard k-ε turbulence model and SIMPLEC algorithm were chosen in FLUENT.The simulation was steady and moving reference frame was used to consider rotor-stator interaction. Head and efficiency curves of the models were obtained according to the simulation, and were compared with the experiment data. Also, the flow field was analyzed.

    2 Research Models and Prediction Algorithm

    Specific speed of the models varies from 34 to 260 and experiment and geometry parameters at design flow rate are shown in Table. The 3D models of impeller, volute and suction were produced by professional software Pro/E and the gap between impeller and volute was appended to impeller (as shown in Fig. 1). The impeller inlet and volute outlet were extended properly to reduce the effect of boundary conditions on inner flow. GAMBIT, the preprocessor of FLUENT, was used to generate grid ofmodels and grid quality was checked. Since the geometry of the pump is very complex, tetrahedron mesh was used for the generation and “EquiAngle Skew” and “EquiSize Skew” of the grid were all less than 0.87, so the grid quality was good. Relativity examination of grid number was done for each model. When the effect of grid number on pump characteristics was less than 2%, the effect is ignored.Convergence precision of residuals was 10–5.

    Table. Experiment and geometry parameters of research models

    Fig. 1. Computational zones of pump No. 4

    2.1 Experiments of research model

    All the model pumps were tested in Jiangsu University.The experiments were conducted in an open loop, which consists of a reservoir open to air, a suction valve, a test pump, a discharge pipe and a discharge valve. Each model pump has a single axial suction and a volute casing. In the circuit, water was pumped from and returned to a huge reservoir. The flow rate was regulated by the discharge valve and was measured by electromagnetic flow meter.The rotation speed was detected by plus signals.

    Flow rate uncertainties are found to be always less than 0.5%. The head and efficiency uncertainties are kept under 1% and 1.5%, respectively. The experiment data are shown in Table.

    2.2 Boundary conditions

    Inlet boundary condition: assume that inlet velocity vinis uniform at axis direction and its value equals to ratio of flow rate and inlet area:

    where q is the flow rate, Dinis the pump inlet diameter.

    Turbulent kinetic energy kinand turbulent dissipation rate εinat inlet can be estimated by the following formula:

    where l is the turbulent length scale and l=0.07Din,Cμ=0.09.

    Outlet boundary condition: “outflow” is implemented on pump outlet and flow rate weighting is set to be 1.

    Wall boundary condition: no slip condition is enforced on wall surface and standard wall function is applied to adjacent region.

    2.3 Prediction algorithm

    Head H is calculated by the following formula:

    where poutis the total pressure at volute outlet, pinis the total pressure at impeller inlet, ρ is the density of liquid, g is the gravity acceleration.

    Hydraulic efficiency ηhis calculated as

    where M is the impeller torque, ω is the angle velocity.

    Volume efficiency ηvis calculated as[8]

    Total efficiency η is calculated as

    where Peis the water power and Pe=ρgqH, ?Pdis the disk friction loss and its calculation method is in Ref. [9].

    3 Prediction Results and Analysis

    Fig. 2 shows prediction and experiment performance curves, including flow rate–head curve and flow rate–efficiency curve. According to the data in Fig. 2,prediction discrepancy can be computed as follows:

    where ?H is the head discrepancy, ?η is the efficiency discrepancy, Hpis the prediction head, Heis experiment head, ηpis prediction total efficiency, ηeis the experiment total efficiency.

    Discrepancy calculation results: for all flow rate points of every model, maximum discrepancy of prediction head is 4.81%, minimum discrepancy is 0.24%, average discrepancy is 2.49% and maximum discrepancy of prediction total efficiency is 4.52%, minimum discrepancy is 0.08%, average discrepancy is 2.02%. At design flow rate, maximum discrepancy of prediction head is 4.81%,minimum discrepancy is 0.65% and average discrepancy is 2.02% and maximum discrepancy of prediction total efficiency is 4.42%, minimum discrepancy is 0.54%,average discrepancy is 2.4%. The calculation indicates that all discrepancies are within 5%.

    More information can be obtained from discrepancy computation. Prediction head and prediction efficiency do not show same trends, which means that the former is bigger than experiment data while the latter may be smaller,and so are prediction head discrepancy and prediction efficiency discrepancy. The analysis still shows that precision of performance prediction at design flow rate is not the highest.

    4 Analysis of Inner Flow Field at Different Flow Points

    4.1 Static pressure distribution

    As shown in Fig. 3, at different flow rates, static pressure gradually increases from impeller inlet to outlet, and the static pressure on pressure side is evidently larger than that on suction side at the same impeller radius. According to the density of isobar, it is found that the static pressure increases slowly with the augment of flow rate. At small flow rate, there is an obvious low pressure area at the suction side of blade inlet, especially in flow passages 1, 2 and 3, where cavitations are easy to take place. When the flow increases, the area gets close to the middle of blade suction side, also especially in flow passages 1, 2 and 3.The static pressure on diffusion section of volute outlet increases markedly at small and design flow rates while the static pressure on the same place decreases clearly at big flow rate because of cut-water limitation. As a result of larger offset to design flow rate, the static pressure distribution in the impeller and volute becomes apparently disordered and uniform, particularly near the tongue of volute.

    4.2 Relative velocity distribution

    As shown in Fig. 4, relative velocity distribution in different flow passages is evidently dissimilar at any flow rate, which indicates that the volute has an important effect on inner flow in the impeller. For different flow rates, the relative velocity distribution in the impeller is obviously different, especially in flow passages 1, 2 and 3. At small flow rate, on blade pressure side, there is a big “dead water” zone where relative velocity is lesser. As the pump flow rate increases, the zone gets smaller gradually,especially in flow passage 2. Meanwhile, from the inlet amplificatory distribution, it is found that the direction of velocity at blade inlet changes obviously at off-design flow rates, which leads to a big impact on the blade. The incident angle at big flow rate is negative and positive at small flow rate, which agrees well with theory analysis[8].

    5 Conclusions

    With commercial code FLUENT, the coupled simulation of six centrifugal pumps is presented in detail in this paper at different flow rates and characteristic prediction model for centrifugal pumps is established. How to dispose the gap between the impeller and volute is presented and the effect of grid number is considered. The main research conclusions are as below.

    (1) The discrepancies of prediction head and prediction total efficiency are less than 5%. For all flow rate points of every model, average discrepancy of head is 2.49% and average discrepancy of prediction total efficiency is 2.02%.Prediction head and prediction efficiency do not show the same trends and precision of performance prediction at design flow rate is not the highest.

    (2) There is an obvious low pressure area at the suction side of blade inlet at small flow rate, as the flow increases,the area gets close to the middle of blade suction side. The static pressure on diffusion section of volute outlet increases markedly at small and design flow rate while the static pressure on the same place decreases clearly at big flow rate. As the pump flow rate increases, the “dead water” zone gets smaller gradually. The direction of velocity at blade inlet changes obviously at off-design flow rates. The incident angle at big flow rate is negative and it is positive at small flow rate.

    (3) The present study has demonstrated that the proposed numerical method in this paper produces a good prediction of the centrifugal pump performance and can be applied in practice.

    Fig. 2. Prediction results of the models

    Fig. 3. Static pressure distribution on middle face of pump No. 3 (kPa)

    Fig. 4. Relative velocity distribution on impeller middle face of pump No. 3 and its amplificatory distribution at inlet (m/s)

    [1] MAJIDI K. Numerical study of unsteady flow in a centrifugal pump[J]. Journal of Turbomachniery, 2005, 127: 363-371.

    [2] JOSé González, JOAQUìN Fernández, BLANCO E, et al. Numerical simulation of the dynamic effects due to impeller – volute interaction in a centrifugal pump[J]. Transactions of the ASME, 2002, 124:348-354.

    [3] JOSé González, SANTOLARIA C. Unsteady flow structure and global variables in a centrifugal pump[J]. Journal of Fluids Engineering, 2006, 128: 937-946.

    [4] BYSKOV R K, JACOBSEN C B, PADERSEN N. Flow in a centrifugal pump impeller at design and off-design conditions — PartⅡ: large eddy simulations[J]. Journal of Fluids Engineering, 2003,125: 73-83.

    [5] PADERSEN N, LARSEN P S, JACOBSEN C B. Flow in a centrifugal pump impeller at design and off-design conditions — Part I: particle image velocimetry(PIV) and laser Doppler velocimetry(LDV) measurements[J]. Journal of Fluids Engineering,2003, 125: 61-72.

    [6] ZHAO Binjuan, YUAN Shouqi, LIU Houlin, et al. Three-dimensional coupled impeller-volute simulation of flow in centrifugal pump and performance prediction[J]. Chinese Journal of Mechanical Engineering, 2006, 19(1): 59-62.

    [7] CHEN Hongxun, ZOU Xuelian. Unsteady flow characteristic performance within single channel pump[J]. Chinese Journal of Mechanical Engineering, 2005, 41(11): 163-170. (in Chinese).

    [8] GUAN Xingfan. Modern pump technology manual[M]. Beijing:Yuhang Press, 1995. (in Chinese).

    [9] TAN Minggao. Theory and software development on characteristics prediction of centrifugal pumps[D]. Zhenjiang: Jiangsu University,2006. (in Chinese).

    日韩,欧美,国产一区二区三区| 国产精品99久久99久久久不卡 | 人妻少妇偷人精品九色| 久久ye,这里只有精品| 99re6热这里在线精品视频| 纯流量卡能插随身wifi吗| 在线观看三级黄色| av网站免费在线观看视频| 日日摸夜夜添夜夜添av毛片| 欧美成人午夜免费资源| 国产无遮挡羞羞视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲av成人精品一二三区| 男女免费视频国产| 免费大片黄手机在线观看| 国产精品国产av在线观看| 一个人看视频在线观看www免费| 免费av不卡在线播放| 久久久久久久久久久免费av| 在线 av 中文字幕| 国产亚洲欧美精品永久| 伊人亚洲综合成人网| 人妻夜夜爽99麻豆av| 边亲边吃奶的免费视频| 少妇精品久久久久久久| 黑人欧美特级aaaaaa片| 少妇人妻 视频| 天堂中文最新版在线下载| 人体艺术视频欧美日本| 又大又黄又爽视频免费| 日韩强制内射视频| 美女xxoo啪啪120秒动态图| 久久热精品热| 尾随美女入室| 国产精品麻豆人妻色哟哟久久| 飞空精品影院首页| 高清毛片免费看| 亚洲少妇的诱惑av| 久久99热6这里只有精品| 亚洲欧洲日产国产| 美女大奶头黄色视频| 大香蕉97超碰在线| 这个男人来自地球电影免费观看 | 久久精品国产亚洲av涩爱| 蜜桃久久精品国产亚洲av| 国产成人a∨麻豆精品| 亚洲欧洲日产国产| 七月丁香在线播放| 日韩伦理黄色片| 亚洲精品日韩在线中文字幕| 69精品国产乱码久久久| 国产综合精华液| 日韩一区二区三区影片| 伊人久久国产一区二区| 日本欧美视频一区| 一边摸一边做爽爽视频免费| av卡一久久| 91精品国产国语对白视频| 色视频在线一区二区三区| 多毛熟女@视频| 久久人人爽av亚洲精品天堂| 黄色怎么调成土黄色| 国产国语露脸激情在线看| 在线看a的网站| 80岁老熟妇乱子伦牲交| 一级爰片在线观看| 一个人看视频在线观看www免费| 老司机影院毛片| 纯流量卡能插随身wifi吗| 日韩亚洲欧美综合| 狂野欧美激情性xxxx在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产av影院在线观看| 亚洲欧美日韩卡通动漫| 在线观看www视频免费| av在线老鸭窝| 一级黄片播放器| 高清不卡的av网站| 国产视频首页在线观看| 亚州av有码| 韩国av在线不卡| av.在线天堂| 国产成人精品无人区| 亚洲国产毛片av蜜桃av| 在线免费观看不下载黄p国产| 亚洲情色 制服丝袜| 在线观看三级黄色| 免费大片18禁| 国产精品蜜桃在线观看| 日韩熟女老妇一区二区性免费视频| 少妇丰满av| 日韩强制内射视频| a 毛片基地| 精品久久蜜臀av无| 91精品国产国语对白视频| 亚洲成人一二三区av| 欧美激情 高清一区二区三区| 欧美精品人与动牲交sv欧美| 日韩三级伦理在线观看| 久久影院123| 日韩免费高清中文字幕av| 久久久久久久国产电影| 伊人久久精品亚洲午夜| 国产白丝娇喘喷水9色精品| 99热这里只有精品一区| www.av在线官网国产| 又大又黄又爽视频免费| 亚洲四区av| 中文字幕久久专区| freevideosex欧美| 久久国产亚洲av麻豆专区| 久久精品国产a三级三级三级| 全区人妻精品视频| 欧美另类一区| 欧美3d第一页| 日韩熟女老妇一区二区性免费视频| 人成视频在线观看免费观看| 91久久精品国产一区二区三区| 免费黄色在线免费观看| 十八禁网站网址无遮挡| 26uuu在线亚洲综合色| 91久久精品国产一区二区成人| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 久久久国产一区二区| 亚洲五月色婷婷综合| 亚洲性久久影院| 日韩中字成人| 99久国产av精品国产电影| 这个男人来自地球电影免费观看 | av卡一久久| 亚洲精品乱码久久久v下载方式| 少妇的逼水好多| 大话2 男鬼变身卡| 久久影院123| 欧美日韩亚洲高清精品| 老司机影院毛片| 国产男人的电影天堂91| 欧美丝袜亚洲另类| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频 | 精品久久蜜臀av无| 国产精品国产三级国产专区5o| 高清视频免费观看一区二区| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 欧美人与善性xxx| 视频区图区小说| 亚洲欧美清纯卡通| 18+在线观看网站| 亚洲精品日韩av片在线观看| 好男人视频免费观看在线| 亚洲国产最新在线播放| 国产精品国产三级专区第一集| 欧美日韩成人在线一区二区| 视频区图区小说| 男女边吃奶边做爰视频| 久久人人爽av亚洲精品天堂| 亚洲色图综合在线观看| 精品一区二区三区视频在线| 又粗又硬又长又爽又黄的视频| 欧美国产精品一级二级三级| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看| 国产男女内射视频| 亚洲精品456在线播放app| 国产探花极品一区二区| 日韩人妻高清精品专区| 中文天堂在线官网| 只有这里有精品99| 免费人妻精品一区二区三区视频| 精品久久久久久久久亚洲| 久久久久久久久大av| 国产精品免费大片| 夜夜骑夜夜射夜夜干| 欧美 亚洲 国产 日韩一| 黄色视频在线播放观看不卡| 亚洲国产欧美日韩在线播放| 999精品在线视频| 日韩视频在线欧美| 人妻 亚洲 视频| 免费大片黄手机在线观看| 精品国产露脸久久av麻豆| 亚洲精品久久久久久婷婷小说| 一级毛片 在线播放| 国产精品久久久久久av不卡| 免费人成在线观看视频色| 中文欧美无线码| 卡戴珊不雅视频在线播放| 999精品在线视频| 两个人免费观看高清视频| 精品一品国产午夜福利视频| 色5月婷婷丁香| 麻豆成人av视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜日本视频在线| 99久久中文字幕三级久久日本| 亚洲精品色激情综合| 久久久国产一区二区| 我的女老师完整版在线观看| 午夜久久久在线观看| 成人18禁高潮啪啪吃奶动态图 | 妹子高潮喷水视频| 99热这里只有精品一区| 在线观看人妻少妇| 热99久久久久精品小说推荐| 国产一区二区三区综合在线观看 | 欧美日韩亚洲高清精品| 精品久久久噜噜| 国产一区二区三区av在线| 18禁在线无遮挡免费观看视频| 午夜精品国产一区二区电影| av线在线观看网站| 在线观看www视频免费| tube8黄色片| 又黄又爽又刺激的免费视频.| 国产成人精品一,二区| 尾随美女入室| 最近最新中文字幕免费大全7| 老司机影院成人| 精品久久久噜噜| 免费大片黄手机在线观看| 人人妻人人澡人人爽人人夜夜| 交换朋友夫妻互换小说| 2022亚洲国产成人精品| 一边亲一边摸免费视频| 人人妻人人添人人爽欧美一区卜| 欧美xxxx性猛交bbbb| 大香蕉久久网| 中国国产av一级| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| av在线播放精品| 秋霞在线观看毛片| 亚洲成人av在线免费| 看免费成人av毛片| 国产淫语在线视频| 亚洲精品久久成人aⅴ小说 | 97超碰精品成人国产| 久久久亚洲精品成人影院| 综合色丁香网| 欧美日韩亚洲高清精品| 久久精品国产亚洲网站| 欧美日韩av久久| 麻豆乱淫一区二区| 97在线人人人人妻| 国产成人freesex在线| 亚洲色图 男人天堂 中文字幕 | a级毛片黄视频| 久久精品人人爽人人爽视色| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 亚洲欧洲国产日韩| 亚洲精品日本国产第一区| 精品人妻一区二区三区麻豆| 国产精品人妻久久久久久| 精品酒店卫生间| 成人毛片a级毛片在线播放| 永久网站在线| 亚洲天堂av无毛| 有码 亚洲区| 韩国高清视频一区二区三区| 91久久精品电影网| 亚洲综合精品二区| 黄色一级大片看看| 国产日韩一区二区三区精品不卡 | 国产精品成人在线| 美女cb高潮喷水在线观看| 国产免费又黄又爽又色| 欧美日韩综合久久久久久| 亚洲精品aⅴ在线观看| 久久99精品国语久久久| 国产一区二区三区av在线| 青春草亚洲视频在线观看| 亚洲欧美中文字幕日韩二区| 考比视频在线观看| 爱豆传媒免费全集在线观看| 18禁动态无遮挡网站| 成人亚洲欧美一区二区av| 一级,二级,三级黄色视频| 日韩精品有码人妻一区| 最近最新中文字幕免费大全7| 高清av免费在线| 成人漫画全彩无遮挡| 王馨瑶露胸无遮挡在线观看| 自线自在国产av| 一级毛片aaaaaa免费看小| 尾随美女入室| 欧美三级亚洲精品| 中国三级夫妇交换| 一本久久精品| 丁香六月天网| 国产精品99久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 爱豆传媒免费全集在线观看| 2021少妇久久久久久久久久久| 热re99久久精品国产66热6| 久久精品国产鲁丝片午夜精品| 久久毛片免费看一区二区三区| 久久久欧美国产精品| 久久久久久久久久人人人人人人| 街头女战士在线观看网站| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 男女免费视频国产| 只有这里有精品99| 精品久久蜜臀av无| av国产久精品久网站免费入址| 特大巨黑吊av在线直播| 亚洲人成网站在线观看播放| 91国产中文字幕| 美女内射精品一级片tv| 国产乱人偷精品视频| 99国产精品免费福利视频| 五月开心婷婷网| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 视频中文字幕在线观看| 嘟嘟电影网在线观看| 看十八女毛片水多多多| 精品久久久久久电影网| 国产精品免费大片| 国产精品久久久久成人av| 午夜激情福利司机影院| 午夜免费男女啪啪视频观看| 成人毛片a级毛片在线播放| 免费不卡的大黄色大毛片视频在线观看| 国产老妇伦熟女老妇高清| 丁香六月天网| 久久这里有精品视频免费| 精品久久久噜噜| 国产毛片在线视频| 亚洲精品亚洲一区二区| 久久综合国产亚洲精品| 欧美97在线视频| 精品久久久久久电影网| av在线app专区| 免费人妻精品一区二区三区视频| 精品少妇久久久久久888优播| 亚洲欧美日韩另类电影网站| 国产亚洲精品第一综合不卡 | 婷婷色av中文字幕| 18禁动态无遮挡网站| 伦理电影大哥的女人| 欧美精品国产亚洲| 99热这里只有精品一区| 91久久精品电影网| av国产精品久久久久影院| 国产精品不卡视频一区二区| 黑人欧美特级aaaaaa片| 国产探花极品一区二区| 高清不卡的av网站| 国产成人精品福利久久| 国产av国产精品国产| 三上悠亚av全集在线观看| 人人妻人人澡人人爽人人夜夜| 久久久久人妻精品一区果冻| 日韩制服骚丝袜av| 大片免费播放器 马上看| 中文字幕免费在线视频6| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 人妻人人澡人人爽人人| 丝瓜视频免费看黄片| freevideosex欧美| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 一级黄片播放器| 少妇高潮的动态图| 美女大奶头黄色视频| av电影中文网址| 国产欧美亚洲国产| 一本—道久久a久久精品蜜桃钙片| 少妇人妻精品综合一区二区| 久久久国产精品麻豆| √禁漫天堂资源中文www| 婷婷成人精品国产| 全区人妻精品视频| 久久99热这里只频精品6学生| 久久国产精品男人的天堂亚洲 | 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 国产伦理片在线播放av一区| 精品久久蜜臀av无| 18禁观看日本| 最新的欧美精品一区二区| 精品少妇内射三级| 亚洲av成人精品一区久久| 免费高清在线观看视频在线观看| 人人澡人人妻人| 在线免费观看不下载黄p国产| 精品卡一卡二卡四卡免费| av线在线观看网站| 我的老师免费观看完整版| 欧美性感艳星| 久久久亚洲精品成人影院| 日韩强制内射视频| 老女人水多毛片| 观看av在线不卡| 美女cb高潮喷水在线观看| 一个人看视频在线观看www免费| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 国产欧美另类精品又又久久亚洲欧美| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 亚洲精品一区蜜桃| 夜夜爽夜夜爽视频| 考比视频在线观看| freevideosex欧美| 久久韩国三级中文字幕| 精品亚洲成a人片在线观看| 国产免费现黄频在线看| av福利片在线| 春色校园在线视频观看| 亚洲三级黄色毛片| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的| 色94色欧美一区二区| 日本vs欧美在线观看视频| 插阴视频在线观看视频| 国产在线视频一区二区| 99热网站在线观看| 女性被躁到高潮视频| 不卡视频在线观看欧美| 精品一区二区免费观看| 最近的中文字幕免费完整| 午夜福利在线观看免费完整高清在| 大片免费播放器 马上看| 国产免费现黄频在线看| 国产精品熟女久久久久浪| a级毛片在线看网站| 99热全是精品| 久久精品久久久久久噜噜老黄| 亚洲少妇的诱惑av| 777米奇影视久久| 亚洲人成网站在线观看播放| 91在线精品国自产拍蜜月| 精品酒店卫生间| 一区二区三区乱码不卡18| 成年美女黄网站色视频大全免费 | 欧美xxⅹ黑人| 在线免费观看不下载黄p国产| 国产精品无大码| 国产一级毛片在线| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 多毛熟女@视频| 欧美人与善性xxx| 热re99久久国产66热| 午夜福利在线观看免费完整高清在| 国产精品99久久99久久久不卡 | 蜜桃久久精品国产亚洲av| 一级毛片 在线播放| 日韩精品免费视频一区二区三区 | 国产免费一区二区三区四区乱码| 国产免费一级a男人的天堂| 日韩在线高清观看一区二区三区| 午夜影院在线不卡| 视频区图区小说| 久久久久久久大尺度免费视频| 午夜av观看不卡| 国产精品久久久久久精品古装| 国产精品偷伦视频观看了| 另类精品久久| 国产精品成人在线| 亚洲精品中文字幕在线视频| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 最新中文字幕久久久久| 国产视频内射| 欧美日韩视频精品一区| 在线观看www视频免费| av播播在线观看一区| 久久人人爽人人片av| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| 边亲边吃奶的免费视频| 免费观看的影片在线观看| 日本免费在线观看一区| 亚洲综合精品二区| 熟女电影av网| 国产免费视频播放在线视频| 高清视频免费观看一区二区| 国国产精品蜜臀av免费| 国产色婷婷99| 国产亚洲午夜精品一区二区久久| 亚洲,欧美,日韩| 能在线免费看毛片的网站| 两个人的视频大全免费| 飞空精品影院首页| 亚洲国产欧美在线一区| 日日摸夜夜添夜夜添av毛片| 国模一区二区三区四区视频| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 女人精品久久久久毛片| 欧美性感艳星| 99视频精品全部免费 在线| 亚洲国产色片| 五月伊人婷婷丁香| 成人综合一区亚洲| 国产日韩一区二区三区精品不卡 | 精品国产一区二区久久| 一区二区日韩欧美中文字幕 | 啦啦啦中文免费视频观看日本| 国产探花极品一区二区| 国产极品天堂在线| 制服人妻中文乱码| 亚洲第一av免费看| 极品人妻少妇av视频| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 成人二区视频| 精品久久久久久久久亚洲| 午夜激情av网站| 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 午夜av观看不卡| 蜜桃在线观看..| 少妇人妻 视频| 亚洲欧美色中文字幕在线| 亚洲av福利一区| 国产淫语在线视频| 黑人猛操日本美女一级片| 午夜免费男女啪啪视频观看| 国产成人av激情在线播放 | 中文字幕人妻丝袜制服| 亚洲精品日本国产第一区| 日产精品乱码卡一卡2卡三| 欧美 日韩 精品 国产| 少妇丰满av| 熟妇人妻不卡中文字幕| 黄片无遮挡物在线观看| 热re99久久精品国产66热6| 99热国产这里只有精品6| 亚洲国产毛片av蜜桃av| 国产片内射在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 青春草国产在线视频| 久久久午夜欧美精品| 性色av一级| 久久99精品国语久久久| 国产亚洲一区二区精品| 亚洲精品,欧美精品| 久久精品久久久久久久性| 视频区图区小说| 国产av一区二区精品久久| av又黄又爽大尺度在线免费看| 久久婷婷青草| 久久国产精品大桥未久av| 女人精品久久久久毛片| 国产免费又黄又爽又色| 高清av免费在线| 国产在线一区二区三区精| 极品人妻少妇av视频| 国产在线一区二区三区精| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 18禁在线播放成人免费| 国产成人freesex在线| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 亚州av有码| 亚洲五月色婷婷综合| 成人手机av| 丝袜在线中文字幕| 男女啪啪激烈高潮av片| 成年人午夜在线观看视频| 晚上一个人看的免费电影| freevideosex欧美| 人妻系列 视频| 麻豆成人av视频| 啦啦啦中文免费视频观看日本| 色网站视频免费| 日本欧美国产在线视频| 黄片无遮挡物在线观看| 日日啪夜夜爽| 久久久精品94久久精品| videosex国产| 丝袜脚勾引网站| 欧美日韩视频精品一区| 国产色爽女视频免费观看| av一本久久久久| 国产精品.久久久| 18禁在线无遮挡免费观看视频| a级毛色黄片| 大话2 男鬼变身卡| 日本黄色片子视频| 极品人妻少妇av视频| 午夜影院在线不卡| 欧美日韩视频高清一区二区三区二| 熟女电影av网| 秋霞在线观看毛片| 草草在线视频免费看| 80岁老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| av有码第一页| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| av国产久精品久网站免费入址| 交换朋友夫妻互换小说| 性色avwww在线观看| 天天操日日干夜夜撸| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 亚洲精品456在线播放app| 色婷婷av一区二区三区视频| 老女人水多毛片| 国产精品一区二区在线不卡| 免费大片黄手机在线观看| 一区二区三区四区激情视频|