• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    2009-05-15 06:17:22YANSangtian閆桑田LIAn李安ZHENGHao鄭浩LUOMingfang羅明芳andXINGXinhui邢新會(huì)
    關(guān)鍵詞:桑田李安

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    ?

    Effects of Ionic Surfactants on Bacterial Luciferase and α-Amylase*

    YAN Sangtian (閆桑田), LI An (李安), ZHENG Hao (鄭浩), LUO Mingfang (羅明芳) and XING Xinhui (邢新會(huì))**

    Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

    In order to study the effects of ionic surfactants on bacterial luciferase, the cationic surfactant dodecyltrimethylammonium biomide (DTAB) and anionic surfactant sodium dodecylsulfate (SDS) were chosen. For comparison with bacterial luciferase, α-amylase was used since these two enzymes have similar electrostatic potential and charged active sites. After the enzymes were treated with the surfactants, the catalytic properties of bacterial luciferase and α-amylase were assayed, and fluorescence spectroscopy and circular dichroism (CD) were used to analyze the alteration of the protein structure. The results showed that when the DTAB concentration was low, the cationic surfactant DTAB enhanced the enzymatic activities of bacterial luciferase and α-amylase. On the other hand, the anionic surfactant SDS did not alter the enzymatic activity. The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins was the ionic interaction, which could alter the environment for the enzyme to work when the DTAB/enzyme molar ratio was low. However, at high cationic surfactant concentration, the ionic interaction and hydrophobic interaction might destroy the secondary and tertiary structures of the proteins, leading to the loss of enzymatic activities.

    luciferase, α-amylase, ionic surfactant, surfactant-enzyme interaction

    1 Introduction

    Many organisms, ranging from bacteria and fungi to fireflies and fish, are capable of emitting light [1]. In these systems, bacterial bioluminescence (LUX) is generated by a complicated reaction catalyzed by bacterial luciferase, shown in Eqs. (1) and (2) [2]. The bacterial luciferase is encoded by theAB gene, which can be widely expressed in other organisms.

    As seen from the above reaction mechanism, in addition to luciferase, intracellular coenzymes of FMN, FMNH2and NAD(P)H are also involved in luminescence. Bioluminescence is thus dependent upon bacterial cell concentration and metabolic activity. Bioluminescent bacteria have been used formonitoring of the toxicity of environmental samples and as commercial biosensors [3, 4]. Bioluminescence can also be used to indicate the biocatalyst concentration in mixed culture or in cofactor regeneration systems [5, 6]. In the above applications, the sensitivity of the bioluminescence formation is important. Recently, it has been reported that the light emission in the bioluminescence reaction by firefly luciferase is improved by a surfactant [7]. In our previous study [2], we use the cationic surfactant dodecyltrimethylammonium biomide (DTAB) to treat theBLU cells containing bacterialgenes, which significantly alters the bioluminescence output, but the reason remains unclear. Until now, few researches have been reported on analysis of the interaction between bacterial luciferase and surfactants.

    Surfactant-enzyme (protein) interactions in aqueous solutions have been focused in many researches, and extensively studied for applications such as drug delivery, cosmetics and detergency, biodegradation, and for membrane proteins and lipids [8]. The interactions are important because they can modulate protein functions [9]. however, it is still very difficult to predict the molecular alteration of a protein by surfactants.

    For interaction of surfactants with proteins, sodium dodecylsulfate (SDS) is the one studied most extensively. Other surfactants such as bile salts (sodium taurodeoxycholate, in particular), cetyltrimethylammonium bromide (CTAB) and DTAB [10] have also been investigated. The ionic head groups of the surfactants bind to the oppositely charged groups on protein surfaces by electrostatic interaction. The non-polar tail groups of the surfactants interact with the non-polar regions of proteins by hydrophobic interaction [9]. The intermolecular force of ionic surfactants and proteins involves electrostatic forces and polar molecule forces, and the electrostatic Coulomb force between the two charged atoms, or ions, is by far the strongest physical force [11].

    In this study, in order to explore the effects of ionic surfactants on bacterial luciferase, the cationic surfactant DTAB and anionic surfactant SDS are chosen. The effects of surfactants on the enzyme structure and activity are examined. Since the surface amino acid charge in a protein is the key factor affecting the interaction between proteins and ionic surfactants [12], in addition to bacterial luciferase, several other enzymes including pepsin, firefly luciferase, α-amylase and lysozyme are used to estimate the surface electrostatic potential by Insight II software. The local charges on the protein surfaces are also very important, especially at the active site. According to the Insight II calculation results and the Protein Data Bank (PDB) database, the enzyme(s) with the most similar surface electrostatic potential and charges of the active site to those of the bacterial luciferase is chosen for comparison.

    After the enzymes are treated with surfactants, the catalytic properties of bacterial luciferase and α-amylase are assayed. Since the interaction of ionic surfactants with enzymes may result in changes in the tertiary and secondary structures [15, 16], in this study fluorescence spectroscopy and circular dichroism (CD) are used to analyze the alteration of the protein structure.

    2 Materials and methods

    2.1 Materials

    Two well-characterized enzyme proteins were used in this study: bacterial luciferase (EC 1.14.14.3; L8507; Sigma Chemical Co., molecular weight 40140) and α-amylase (EC 3.2.1.1; A4551; Sigma Chemical Co., molecular weight 44918). DTAB was purchased from TCI.-Decanol was purchased from Wako. SDS was purchased from Sigma. All other chemicals were of analytical grade and commercially available. The surface electrostatic potential of protein was calculated using the Insight II software (Biosym, San Diego, CA, USA, Accelrys Inc. 2001). The structural data of the two enzymes were downloaded from PDB [17], and input into the Insight II software to calculate the average surface electrostatic potential for a molecular structure under any pH condition. To choose the enzyme for comparison with the target bacterial luciferase, many enzymes including pepsin, bacterial luciferase, firefly luciferase, α-amylase and lysozyme were used for the molecular calculation.

    2.2 Procedures

    2.3 Analysis

    2.3.1

    The bacterial luciferase activity was evaluated by the bioluminescence (LUX) [1]. The reaction mixture for bioluminescence determination consisted of 1 ml.cell lysate, to provide the coenzyme for the reaction, and 50 μl 1 g·L-1bacterial luciferase. After the mixture was prepared and 10 μl-decanal was added, the bioluminescence was immediately detected by using a luminocounter (NU-700, Microteku-nichion, Japan). The waiting time and detection time of the luminocounter were set at 5 s, respectively [6]. The result of LUX was expressed by relative luminescence units (RLUs). Triplicate measurements were performed for each sample.

    2.3.2

    The fluorescence spectroscopy experiments were performed using a fluorescence spectrophotometer (F-2500, Hitachi Co., Japan). The enzyme solution after treatment with the surfactants was excited at 280 nm and the fluorescence due to the tryptophan and tyrosine residues was measured in the range of 300-500 nm. The value ofmaxfor the emission was found to be about 340 nm.

    2.3.3

    The changes in the secondary and tertiary structures of bacterial luciferase and α-amylase with the DTAB and SDS treatment under different conditions were evaluated by CD measurement. The far-ultraviolet CD spectra between 190 and 250 nm were recorded at 25°C with a spectropolarimeter (J-715, JASCO, Tokyo, Japan).

    3 Results and Discussion

    3.1 Enzymatic activity after treatment with DTAB and SDS

    In order to compare the cationic surfactant DTAB and anionic surfactant SDS, the surfactant concentration, expressed by molar ratio (surfactant moles/enzyme moles), is in the range 100︰1 to 12000︰1 in this study. The enzymatic activity after treatment with different molar ratios of DTAB is shown in Fig. 1. At low DTAB concentration, the activities for the bacterial luciferase and α-amylase are enhanced. The highest LUX for the bacterial luciferase is 6.31×106RLU at molar ratio of 130︰1 (DTAB concentration 0.05 g·L-1), which is about 7-fold higher than the LUX of the control without the DTAB treatment. The α-amylase activity is also increased compared with the control, but the maximal increment is smaller than that of the bacterial luciferase. However, when the DTAB/enzyme molar ratio is higher than 1950︰1, the enzymatic activity of the bacterial luciferase decreases. The LUX is 3.87×105RLU at 1 g·L-1DTAB (DTAB/enzyme molar ratio 2600︰1), only about 44% of the control. Similarly, α-amylase keeps its improved activity until the DTAB/enzyme molar ratio reaches 2600︰1, and its activity decreases when the DTAB/enzyme molar ratio is higher than 2920︰1.

    Figure 1 The activities of bacterial luciferase and α-amylase after treatment with DTAB for 20 min

    □?α-amylase;○?bacterial luciferase

    Figure 2 shows the enzymatic activity after treatment with SDS at different SDS/enzyme molar ratios. The anionic surfactant SDS does not enhance the activities of either bacterial luciferase or α-amylase. High SDS concentration also leads to a decrease of enzymatic activity for both enzymes. Moreover, in the control experiments, adding cofactor and surfactant without the luciferase does not affect the detection of LUX (data not shown).

    Figure 2 Activities of bacterial luciferase and α-amylase after treatment with SDS for 20 min

    □?α-amylase;○?bacterial luciferase

    The above results indicate that the bacterial luciferase and α-amylase have the same behavior when treated with DTAB and SDS. For cationic DTAB,there is an optimal molar ratio of DTAB/enzyme for improving the enzyme activity, while the anionic SDS shows a different pattern.

    3.2 Fluorescence spectroscopy

    The fluorescence of bacterial luciferase and α-amylase depends upon tryptophan (Trp) residues (data not shown). Fluorescence spectroscopy is used to analyze the tertiary structure of the bacterial luciferase and α-amylase after treatment with DTAB and SDS (Figs. 3 and 4). As shown in Fig. 3, at low molar ratio of DTAB/enzyme (the ratio 200︰1 for bacterial luciferase and 234︰1 for α-amylase), the fluorescence intensities of these two enzymes are increased compared with the control. It is consistent withan investigation for another luciferase, firefly luciferase, in which the activity is enhanced by liposomes containing cationic surfactant at 0.5 pmol·L-1[7]. However, when the DTAB/enzyme molar ratio is higher than 260︰1 for the bacterial luciferase and 292︰1 for α-amylase, the enzymatic activities of both enzymes decrease.

    Figure 4 shows that after treatment with SDS, the fluorescence intensity of the bacterial luciferase is increased when the SDS/enzyme molar ratio is less than 30︰1, and after that, as the ratio increases, the value ofmaxfor the emission of the bacterial luciferase becomes shorter (blue-shift) [Fig. 4 (a)]. However, the fluorescence intensity of α-amylase increases with the SDS/enzyme molar ratio in the whole range examined [Fig. 4 (b)].

    The increase of the fluorescence intensity or the blue shift of the maximal emission wavelength implies that some parts of the enzymes are more hydrophobic, probably due to the exposure of the Trp to the environment. After treatment with a low molar ratio of DTAB/enzyme, the increases in the fluorescence intensity of the bacterial luciferase and α-amylase indicates that some parts of these two proteins become more hydrophobic [19, 20]. At higher DTAB/enzyme molar ratio, the obvious decrease in the fluorescence intensityindicates that the cationic surfactant changes the tertiarystructure of the bacterial luciferase and α-amylase, implyingthat more Trp residues and other amino acids areexposed to water, causing a more hydrophilic condition.

    Figure 3 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with DTAB for 20 min (EX wave 280 nm)

    Figure 4 Fluorescence spectra of bacterial luciferase and α-amylase after treatment with SDS for 20 min (EX wave 280 nm)

    In contrast, SDS, an anionic surfactant, can provide a more hydrophobic condition for these two enzymes [21]. The fluorescence spectroscopy of the bacterial luciferase and α-amylase after treatment with SDS suggests that SDS makes the enzyme surface more hydrophobic. For the bacterial luciferase, the fluorescence intensity increases with SDS concentration, but the maximal emission wavelength decreases. However, under the same conditions, for the α-amylase, the fluorescence intensity increases linearly with the SDS/enzyme molar ratio. The structure of α-amylase and bacterial luciferase is changed by SDS treatment, but α-amylase is more stable than bacterial luciferase in the presence of SDS.

    3.3 CD spectra

    The far-UV CD spectroscopy (190-250 nm) is shown in Figs. 5 and 6. When the DTAB/enzyme molar ratio is 130 for bacterial luciferase [Fig. 5 (a)] and 260 for α-amylase [Fig. 5 (b)], the CD spectra are not changed significantly, but when the molar ratio is increased to 1300 for the bacterial luciferase and 2600 for α-amylase, the CD spectra are changed obviously. In the CD spectra, the negative minimum peaks at around 209 nm and 222 nm reflect the α-helix [8, 19], and the negative minimum peak at 215 nm indicates the-sheet [19]. Fig. 5 indicates that after treatment with low DTAB/enzyme molar ratio, the α-helix of these two enzymes is destroyed first, and at higher DTAB concentration, the-sheet is destroyed.

    After treatment with SDS at different concentrations, no significant changes occur in the CD spectra (Fig. 6), suggesting that the secondary structures of the enzymes do not change significantly after treatment with SDS in the range of SDS/enzyme molar ratios examined.

    3.4 Interaction between the examined enzymes and surfactants

    The effect of a surfactant on an enzyme’s structure and activity is dependent on the chemically selective interactions between the molecules, which may be influenced by enzyme structure and chemical property of surfactant. For many years, surfactants have been considered as non-specific denaturants of proteins, even though some positive effects of surfactants have been reported to enhance the activity and/or stability of some enzymes [12]. In this study, the interaction of the bacterial luciferase and α-amylase with cationic surfactant DTAB and anionic surfactant SDS are examined by evaluating the changes in the enzymatic activities and molecular structures.

    Figure 5 Circular dichroism spectra for the bacterial luciferase and α-amylase after treatment with DTAB

    Figure 6 Circular dichroism spectra for bacterial luciferase and α-amylase after treatment with SDS

    As shown in Figs. 1 and 2, when the DTAB concentration is low, the cationic surfactant DTAB may enhance the enzymatic activities of the bacterial luciferase and α-amylase, but the anionic surfactant SDS does not alter the enzymatic activities. It is widely accepted that the binding of ionic surfactant molecules to proteins can disrupt the native structure of most globular proteins [22-24]. Ionic surfactants interact with proteins through a combination of electrostatic and hydrophobic forces [25], so the surfactant head group will play a determining role in protein- surfactant interactions, which preferentially begins with the formation of strong ionic bonds between the surfactant polar groups, especially the charged sites on the protein surface [12]. Since the surface electrostatic potential and the local charges of the active sites on the protein surface of these two enzymes are similar at pH 7, the cationic surfactant DTAB may affect the surface anionic amino acid residues, which are negatively charged, or may bind to the negatively charged part on the surface in a similar pattern. The fluorescence spectrum analysis (Fig. 3) also indicates that when the DTAB concentration is low, some parts of the enzyme are exposed to a more hydrophobic environment. The electrostatic force between the active site and the surfactant may allow the active sites of the enzyme to become more flexible by changing its surrounding environment, increasing the enzymatic activity. At high DTAB concentration, the surfactant and protein association changes the enzyme structures, and the bacterial luciferase and α-amylase lose their activity, as indicated by the CD spectra (Fig. 5).

    The main interaction of cationic surfactant DTAB and the negatively charged surface of the proteins is the ionic interaction, which can alter the environment in which the enzyme works when the DTAB/enzyme molar ratio is low. This interaction may contribute to the maximal luciferase activity at molar ratio of 130︰1 of DTAB to luciferase (Fig. 1). The detailed reason is still unclear now, but this phenomenon will be useful for further analysis of the DTAB-enzyme interaction mechanism. However, at higher cationic surfactant concentration, the ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of enzyme activity.

    On the other hand, the interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. Since the surface electrostatic potential and especially the amino acid residues in the active sites of the two enzymes are negative, it may be difficult for the anionic surfactant to access the enzymes. Although the fluorescence spectra (Fig. 4) indicates that the enzymes are exposed to a more hydrophobic environment by in the presence of SDS, the protein structure does not change apparently in the range of the SDS/enzyme molar ratio examined, as reflected by the CD spectra (Fig. 6).

    The results obtained in this study explain the phenomenon in which the luminescence of the bioluminescent.BLU is influenced by the addition of DTAB, and imply that DTAB may be used to enhance the luminescence of bacterial luciferaseor.

    4 Conclusions

    The effect of a surfactant on enzyme structure and activity is dependent on the chemically selective interactions between the two kinds of molecules, which may be influenced by the enzyme structure and the chemical property of the surfactant. When the DTAB concentration is low, the cationic surfactant DTAB enhances the enzymatic activities of bacterial luciferase and α-amylase, while the anionic surfactant SDS has little effect. At higher concentration of cationic surfactant DTAB, the surfactant and protein association may cause some changes in the enzyme structure. The ionic interaction and hydrophobic interaction may destroy the secondary and tertiary structures of the proteins, leading to the loss of the enzyme activity. The interactions of the bacterial luciferase and α-amylase with anionic SDS are different from those with DTAB. The protein structures are not changed apparently in the range of SDS/enzyme molar ratio examined.

    1 Hastings, J.W., “Chemistries and colors of bioluminescent reactions: A review”,, 173, 5-11 (1996).

    2 Tanaka, T., Xing, X.H., Matsumoto, K., Unno, H., “Preparation and characteristics of resting cells of bioluminescentBLU”,..., 12, 29-36 (2002).

    3 Gil, G.C., Kim, Y.J., Gu, M.B., “Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium”,.., 17, 427-432 (2002).

    4 Lampinen, J., Virta, M., Karp, M., “Use of controlled luciferase expression to monitor chemicals affecting protein-synthesis”,..., 61, 2981-2989 (1995).

    5 Burlage, R.S., Kuo., C.T., “Living biosensors for the management and manipulation of microbial consortia”,..., 48, 291-309 (1994).

    6 Xing, X.H., Tanaka, T., Matsumoto, K., Unno, H., “Characteristics of a newly created bioluminescent pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system”,.., 22, 671-676 (2000).

    7 Kamidate, T., Niwa, S., Nakata, N., Application of cationic liposomes containing surfactants to an enhancer in firefly bioluminescent assay of adenosine 5′-triphosphate,.., 424, 169-175 (2000).

    8 Hoshino,E., Tanaka, A., Kanda, T., “Effects of a nonionic surfactant on the behavior ofamyloliquefaciens alpha-amylase in the hydrolysis of malto-oligosaccharide”,.., 9, 63-68 (2006).

    9 Kelley, D., Mcclements, D.J., “Interactions of bovine serum albumin with ionic surfactants in aqueous solutions”,, 17, 73-85 (2003).

    10 Chakraborty, T., Chakraborty, I., Moulik, S.P., Ghosh, S., “Physicochemical studies on pepsin-CTAB interaction: Energetics and structural changes”,..., 111, 2736-2746 (2007).

    11 Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London (1991).

    12 Savelli, G., Spreti, N., Di Profio, P., “Enzyme activity and stability control by amphiphilic self-organizing systems in aqueous solutions”,..., 5, 111-117 (2000).

    13 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Potentiometric study on interaction of dodecyltrimethylammonium bromide with alpha-amylase”,...., 77 (11), 2027-2032 (2004).

    14 Bordbar, A.K., Hosseinzadeh, R., Omidiyan, K., “Study on interaction of alpha-amylase fromsubtilis with cetyl trimethylammonium bromide”,..-, 40, 2027-2032 (2005).

    15 Gharibi, H., Javadian, S., Hashemianzadeh, M., “Investigation of interaction of cationic surfactant with HSA in the presence of alcohols using PFG-NMR and potentiometric technique”,..-..., 232, 77-86 (2004).

    16 Wei, X.F., Liu, H.Z., “Relationship between foaming properties and solution properties of protein/nonionic surfactant mixtures”,.., 3, 491-495 (2000).

    17 Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C., “The protein data bank”,..-.., 58, 899-907 (2002).

    18 Stellmach, B., Bestimmungsmethoden Enzyme, Steinkopff Verlag, Darmstadt (1988).

    19 Wu, D., Xu, G.Y., “Study on protein-surfactant interaction by spectroscopic methods”,..., 22, 254-260 (2006).

    20 Zhao, N., Zhou, H., Biophysics, China Higher Education Press, Beijing (2000). (in Chinese)

    21 Neu, T.R., “Significance of bacterial surface-active compounds in interaction of bacteria with interfaces”,.., 60, 151-166 (1996).

    22 Bordbar, A.K., Moosavi-Movahedi, A.A., Amini, M.K., “A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin”,., 400, 95-100 (2003).

    23 Goddard, E.D., Protein-Surfactant Interactions, CRC Press, New York (1993).

    24 Sabate, R., Estelrich. J., “Interaction of alpha-amylase with-alkylammonium bromides”,...., 28 (2), 151-156 (2001).

    25 Bordbar, A.K., Saboury, A.A., Housaindokht, M.R., Moosavi-Movahedi, A.A., “Statistical effects of the binding of ionic surfactant to protein”,..., 192, 415-419 (1997).

    2009-03-03,

    2009-06-03.

    the National Natural Science Foundation of China (20676071, 20836004).

    ** To whom correspondence should be addressed. E-mail: xhxing@tsinghua.edu.cn

    猜你喜歡
    桑田李安
    青春作伴·沃野桑田
    青梅竹馬
    金山(2021年10期)2021-11-02 08:53:02
    不做房間里最聰明的人
    觀景
    李安電影視聽語言的美學(xué)特征
    科技傳播(2019年23期)2020-01-18 07:58:42
    桑田
    文苑(2019年22期)2019-11-16 03:15:01
    雞毛蒜皮無小事
    迷途終于散了霧
    花火A(2018年4期)2018-05-25 08:53:26
    飄雪
    南風(fēng)(2017年14期)2017-05-12 17:06:39
    李安電影“父親三部曲”中女性意識(shí)
    亚洲人成网站高清观看| 成人特级黄色片久久久久久久| 日韩欧美 国产精品| avwww免费| 久久久久久大精品| 99久久精品国产亚洲精品| 中文字幕久久专区| 精品国产超薄肉色丝袜足j| 18禁黄网站禁片免费观看直播| or卡值多少钱| 精品欧美国产一区二区三| 一卡2卡三卡四卡精品乱码亚洲| 中文资源天堂在线| 少妇人妻一区二区三区视频| 舔av片在线| 一本一本综合久久| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 一区福利在线观看| 久久精品91无色码中文字幕| 级片在线观看| 国产精品98久久久久久宅男小说| 久久这里只有精品中国| 老鸭窝网址在线观看| 久久久久国产一级毛片高清牌| 韩国av一区二区三区四区| 亚洲专区中文字幕在线| 天天添夜夜摸| bbb黄色大片| 国产探花在线观看一区二区| 精品国产超薄肉色丝袜足j| 美女黄网站色视频| 成年人黄色毛片网站| 国产激情久久老熟女| 又黄又爽又免费观看的视频| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 国产精品野战在线观看| 男女午夜视频在线观看| 91av网站免费观看| 制服诱惑二区| 热99re8久久精品国产| 美女高潮喷水抽搐中文字幕| 国产高清视频在线观看网站| 一夜夜www| 国产真实乱freesex| 国产人伦9x9x在线观看| 免费在线观看视频国产中文字幕亚洲| 女同久久另类99精品国产91| 午夜福利18| 长腿黑丝高跟| 日韩高清综合在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 亚洲男人天堂网一区| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久人妻蜜臀av| 黄色a级毛片大全视频| 日本熟妇午夜| 757午夜福利合集在线观看| 又紧又爽又黄一区二区| 欧美日本亚洲视频在线播放| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女| 日韩大码丰满熟妇| 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 亚洲精品久久成人aⅴ小说| 哪里可以看免费的av片| 色播亚洲综合网| 亚洲成av人片免费观看| 成人手机av| 97超级碰碰碰精品色视频在线观看| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 全区人妻精品视频| 欧美一区二区国产精品久久精品 | 国产精品免费视频内射| 中文字幕人妻丝袜一区二区| 亚洲人成伊人成综合网2020| 欧美激情久久久久久爽电影| 18禁国产床啪视频网站| 女警被强在线播放| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 国产成人精品无人区| 最新在线观看一区二区三区| 婷婷精品国产亚洲av| 日韩欧美一区二区三区在线观看| 欧美人与性动交α欧美精品济南到| 成人一区二区视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区中文字幕在线| 国产主播在线观看一区二区| 欧美成狂野欧美在线观看| 脱女人内裤的视频| 国产精品久久久av美女十八| 午夜免费激情av| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 90打野战视频偷拍视频| 欧美极品一区二区三区四区| 亚洲电影在线观看av| 变态另类丝袜制服| 国产69精品久久久久777片 | 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 成年版毛片免费区| 国产精品,欧美在线| 国产av又大| 免费一级毛片在线播放高清视频| 国产真人三级小视频在线观看| 亚洲五月天丁香| 日本一本二区三区精品| av中文乱码字幕在线| 国产一区二区三区在线臀色熟女| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区mp4| 男女床上黄色一级片免费看| 欧美中文日本在线观看视频| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 国产单亲对白刺激| 全区人妻精品视频| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av| 亚洲男人天堂网一区| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 88av欧美| 在线看三级毛片| 亚洲最大成人中文| 1024香蕉在线观看| 国产亚洲欧美98| 精品福利观看| 五月玫瑰六月丁香| 少妇的丰满在线观看| 免费无遮挡裸体视频| 国产成年人精品一区二区| 日韩有码中文字幕| 欧美 亚洲 国产 日韩一| 亚洲美女视频黄频| 成年人黄色毛片网站| 日韩欧美在线乱码| 国产精品久久久久久精品电影| 午夜精品在线福利| 亚洲最大成人中文| 床上黄色一级片| 欧美黄色淫秽网站| 亚洲电影在线观看av| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 一级片免费观看大全| 亚洲在线自拍视频| 日韩 欧美 亚洲 中文字幕| 日韩大码丰满熟妇| 国产免费男女视频| 天堂动漫精品| 两人在一起打扑克的视频| 日韩精品中文字幕看吧| 国产黄a三级三级三级人| 久久久久久亚洲精品国产蜜桃av| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 久久久久精品国产欧美久久久| 黄色 视频免费看| 舔av片在线| 久久伊人香网站| 人妻夜夜爽99麻豆av| 欧美性猛交╳xxx乱大交人| 法律面前人人平等表现在哪些方面| 久久精品91蜜桃| 欧美性猛交黑人性爽| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 丝袜美腿诱惑在线| 国内精品久久久久精免费| 久久国产乱子伦精品免费另类| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 亚洲国产精品999在线| 嫁个100分男人电影在线观看| 麻豆一二三区av精品| 美女午夜性视频免费| 两性夫妻黄色片| 亚洲国产日韩欧美精品在线观看 | 国产真人三级小视频在线观看| 91国产中文字幕| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 1024手机看黄色片| 婷婷亚洲欧美| 久久精品影院6| 免费看日本二区| 国产一级毛片七仙女欲春2| 久久中文字幕一级| 国产av麻豆久久久久久久| 亚洲成人中文字幕在线播放| 久久久精品国产亚洲av高清涩受| 国产午夜福利久久久久久| 国产亚洲精品久久久久5区| 久久人妻av系列| 午夜影院日韩av| 午夜免费激情av| 国产午夜精品论理片| 少妇被粗大的猛进出69影院| 欧美丝袜亚洲另类 | 黄片小视频在线播放| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久5区| 精品久久久久久久久久免费视频| 一区福利在线观看| 欧美3d第一页| 亚洲精品在线美女| 夜夜爽天天搞| 色综合婷婷激情| 国产免费av片在线观看野外av| 精品一区二区三区四区五区乱码| 三级国产精品欧美在线观看 | 亚洲国产中文字幕在线视频| 国产高清视频在线播放一区| 一本久久中文字幕| 精品福利观看| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 搡老岳熟女国产| 后天国语完整版免费观看| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 国产av麻豆久久久久久久| 两个人免费观看高清视频| 热99re8久久精品国产| 一级黄色大片毛片| 欧美成人性av电影在线观看| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看 | 婷婷亚洲欧美| 国产一区二区三区在线臀色熟女| 欧美最黄视频在线播放免费| 在线视频色国产色| 午夜精品久久久久久毛片777| 亚洲一区中文字幕在线| 国内毛片毛片毛片毛片毛片| 一级毛片精品| 久久99热这里只有精品18| 99久久精品国产亚洲精品| 欧美日韩黄片免| 久久久久久久精品吃奶| 国产伦一二天堂av在线观看| 亚洲精品国产精品久久久不卡| 午夜福利成人在线免费观看| 午夜福利18| 99精品久久久久人妻精品| 国产乱人伦免费视频| 亚洲精品美女久久av网站| 99热这里只有精品一区 | 国产蜜桃级精品一区二区三区| 夜夜夜夜夜久久久久| 精品一区二区三区视频在线观看免费| 免费看十八禁软件| 亚洲一区中文字幕在线| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 久久精品影院6| 在线播放国产精品三级| 日韩精品免费视频一区二区三区| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 18禁裸乳无遮挡免费网站照片| 一本大道久久a久久精品| 久久久水蜜桃国产精品网| 日本在线视频免费播放| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 亚洲精品在线美女| 男人的好看免费观看在线视频 | 精品欧美国产一区二区三| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| 色尼玛亚洲综合影院| 久久久国产欧美日韩av| 久久久久性生活片| 久久久久久九九精品二区国产 | 午夜福利在线在线| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 亚洲人成电影免费在线| 一区二区三区激情视频| 亚洲精品久久国产高清桃花| 欧美日韩精品网址| 日韩av在线大香蕉| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 亚洲第一电影网av| 国产高清视频在线播放一区| 我要搜黄色片| 成人18禁高潮啪啪吃奶动态图| 999久久久国产精品视频| av视频在线观看入口| 精品第一国产精品| 精品电影一区二区在线| 夜夜爽天天搞| 亚洲国产精品合色在线| 国产成人精品无人区| 国产伦一二天堂av在线观看| 精品国产乱码久久久久久男人| 一区二区三区国产精品乱码| 国产亚洲欧美在线一区二区| 亚洲精品av麻豆狂野| 国产精品,欧美在线| svipshipincom国产片| 国产精品久久久av美女十八| 精品久久蜜臀av无| 国产三级在线视频| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 无人区码免费观看不卡| xxx96com| 国产av不卡久久| √禁漫天堂资源中文www| 亚洲国产精品sss在线观看| 可以在线观看的亚洲视频| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 精品一区二区三区视频在线观看免费| 嫁个100分男人电影在线观看| 国产精品一区二区精品视频观看| 日本 欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 国产精品精品国产色婷婷| 99国产精品99久久久久| 亚洲无线在线观看| 波多野结衣巨乳人妻| 国产欧美日韩精品亚洲av| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 久久精品国产99精品国产亚洲性色| 国产三级中文精品| 美女 人体艺术 gogo| 国产爱豆传媒在线观看 | 欧美不卡视频在线免费观看 | 日韩中文字幕欧美一区二区| 俺也久久电影网| 变态另类成人亚洲欧美熟女| 麻豆av在线久日| 婷婷亚洲欧美| 99久久无色码亚洲精品果冻| 婷婷精品国产亚洲av| 免费搜索国产男女视频| 久热爱精品视频在线9| 一个人观看的视频www高清免费观看 | 又爽又黄无遮挡网站| 久久久久亚洲av毛片大全| 国产成人aa在线观看| 两个人的视频大全免费| 国产真实乱freesex| 每晚都被弄得嗷嗷叫到高潮| 国产成人aa在线观看| 日本免费一区二区三区高清不卡| 午夜老司机福利片| 久久久久亚洲av毛片大全| 美女 人体艺术 gogo| 欧美一区二区精品小视频在线| 久久香蕉激情| 999久久久国产精品视频| 免费在线观看黄色视频的| 午夜视频精品福利| 久久这里只有精品19| 国产精品久久久久久亚洲av鲁大| 国产日本99.免费观看| 国产精品久久久久久亚洲av鲁大| 国产区一区二久久| 国产精品影院久久| 国产97色在线日韩免费| 少妇人妻一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱| 欧美一级毛片孕妇| 国产主播在线观看一区二区| 亚洲天堂国产精品一区在线| 亚洲熟妇中文字幕五十中出| 亚洲精品av麻豆狂野| av有码第一页| 精品高清国产在线一区| 国产精品av久久久久免费| netflix在线观看网站| 极品教师在线免费播放| 757午夜福利合集在线观看| 99国产精品一区二区蜜桃av| 国产成+人综合+亚洲专区| 欧美黑人精品巨大| 欧美人与性动交α欧美精品济南到| 人人妻人人看人人澡| www.自偷自拍.com| 麻豆av在线久日| 亚洲国产日韩欧美精品在线观看 | 又爽又黄无遮挡网站| 不卡一级毛片| 最近最新中文字幕大全免费视频| 男女那种视频在线观看| 天天躁夜夜躁狠狠躁躁| 男插女下体视频免费在线播放| 在线观看舔阴道视频| 亚洲国产精品999在线| 又大又爽又粗| 国产伦在线观看视频一区| 亚洲18禁久久av| 很黄的视频免费| 757午夜福利合集在线观看| 天天添夜夜摸| 中文在线观看免费www的网站 | 亚洲人成伊人成综合网2020| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 夜夜夜夜夜久久久久| 老司机靠b影院| 久久精品国产亚洲av高清一级| 人妻丰满熟妇av一区二区三区| www.自偷自拍.com| 黄色视频,在线免费观看| 九色国产91popny在线| 一a级毛片在线观看| 99精品久久久久人妻精品| av免费在线观看网站| 国产欧美日韩精品亚洲av| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 国产黄片美女视频| 亚洲精品在线观看二区| 露出奶头的视频| 色尼玛亚洲综合影院| 欧美黑人精品巨大| 精品久久久久久久久久免费视频| 亚洲无线在线观看| 国内精品一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 人妻夜夜爽99麻豆av| 久久久精品国产亚洲av高清涩受| 国产真人三级小视频在线观看| www.熟女人妻精品国产| АⅤ资源中文在线天堂| 高清在线国产一区| 日韩欧美精品v在线| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| www国产在线视频色| 欧美又色又爽又黄视频| 亚洲五月婷婷丁香| 777久久人妻少妇嫩草av网站| 免费搜索国产男女视频| 亚洲午夜精品一区,二区,三区| 久久中文字幕人妻熟女| 欧美日本视频| 成在线人永久免费视频| 麻豆一二三区av精品| 国产一区二区激情短视频| 人妻丰满熟妇av一区二区三区| 亚洲精品色激情综合| 午夜激情福利司机影院| 亚洲成人免费电影在线观看| 国产成人影院久久av| 一二三四在线观看免费中文在| 长腿黑丝高跟| 一级毛片女人18水好多| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 国产av在哪里看| 欧美在线一区亚洲| 一本综合久久免费| 国产精品九九99| 怎么达到女性高潮| 九色成人免费人妻av| 99热这里只有精品一区 | 国产精品美女特级片免费视频播放器 | 91老司机精品| 欧美av亚洲av综合av国产av| 欧美日韩一级在线毛片| 成人特级黄色片久久久久久久| 国产成人精品无人区| 韩国av一区二区三区四区| 久久久水蜜桃国产精品网| 午夜久久久久精精品| 日韩 欧美 亚洲 中文字幕| av片东京热男人的天堂| 亚洲成人久久性| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| 美女 人体艺术 gogo| av欧美777| 国产探花在线观看一区二区| 久久精品国产亚洲av高清一级| 精品国产亚洲在线| 成人国语在线视频| 久久久久久久久久黄片| 亚洲专区字幕在线| 成人手机av| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 国产精品日韩av在线免费观看| 亚洲国产精品合色在线| 久久香蕉激情| 午夜福利欧美成人| 日日夜夜操网爽| 一夜夜www| 国产午夜福利久久久久久| 久久久久久亚洲精品国产蜜桃av| 美女黄网站色视频| 亚洲专区字幕在线| 亚洲成av人片免费观看| 少妇人妻一区二区三区视频| 91老司机精品| 日本a在线网址| 999久久久精品免费观看国产| 亚洲免费av在线视频| 黄片小视频在线播放| 国产午夜精品论理片| 男插女下体视频免费在线播放| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 香蕉丝袜av| 国产午夜福利久久久久久| 国产成人欧美在线观看| 中文字幕人妻丝袜一区二区| 国产精品乱码一区二三区的特点| 99在线视频只有这里精品首页| 欧美在线黄色| 免费观看精品视频网站| 人成视频在线观看免费观看| 亚洲全国av大片| 亚洲国产中文字幕在线视频| 欧美性猛交黑人性爽| 欧美精品啪啪一区二区三区| 免费人成视频x8x8入口观看| 亚洲专区国产一区二区| 免费在线观看影片大全网站| 男人的好看免费观看在线视频 | 视频区欧美日本亚洲| 国产精品久久视频播放| 又紧又爽又黄一区二区| 禁无遮挡网站| 12—13女人毛片做爰片一| 国产麻豆成人av免费视频| 国产精品影院久久| 狂野欧美激情性xxxx| 一区福利在线观看| 国产aⅴ精品一区二区三区波| АⅤ资源中文在线天堂| 久久久久久久久中文| 少妇裸体淫交视频免费看高清 | avwww免费| 欧美大码av| 长腿黑丝高跟| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| 777久久人妻少妇嫩草av网站| 一本久久中文字幕| 日韩欧美 国产精品| 热99re8久久精品国产| 色在线成人网| 欧美另类亚洲清纯唯美| 麻豆国产97在线/欧美 | 国产亚洲精品久久久久5区| 人妻夜夜爽99麻豆av| 国产成人啪精品午夜网站| videosex国产| 亚洲国产高清在线一区二区三| 精品午夜福利视频在线观看一区| 国产亚洲欧美在线一区二区| 国产亚洲av高清不卡| 老司机午夜福利在线观看视频| 黄色视频不卡| 麻豆成人av在线观看| 久久精品国产99精品国产亚洲性色| 黄色视频不卡| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 欧美日韩中文字幕国产精品一区二区三区| 欧美成人午夜精品| 亚洲欧美精品综合久久99| 国产一区二区在线av高清观看| 国产精品99久久99久久久不卡| 国产亚洲欧美98| 床上黄色一级片| 国产亚洲av高清不卡| 中出人妻视频一区二区| 亚洲无线在线观看| 999久久久精品免费观看国产| www.精华液| 香蕉丝袜av| 国内少妇人妻偷人精品xxx网站 | 国产99白浆流出| 国产成人啪精品午夜网站| 亚洲九九香蕉| 久久久久久九九精品二区国产 | 国产精品自产拍在线观看55亚洲| 日本黄大片高清| 色尼玛亚洲综合影院| 国产黄色小视频在线观看| 又粗又爽又猛毛片免费看| 亚洲av成人精品一区久久| 一个人观看的视频www高清免费观看 |