• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory*

    2009-05-15 06:17:42LINGLixia凌麗霞ZHANGRiguang章日光WANGBaojun王寶俊andXIEKechang謝克昌
    關(guān)鍵詞:歷史舞臺單位制普朗克

    LING Lixia (凌麗霞), ZHANG Riguang (章日光), WANG Baojun (王寶俊)** and XIE Kechang(謝克昌)

    ?

    Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory*

    LING Lixia (凌麗霞), ZHANG Riguang (章日光), WANG Baojun (王寶俊)** and XIE Kechang(謝克昌)

    Key Laboratory of Coal Science and Technology (Taiyuan University of Technology), Ministry of Education and Shanxi Province, Taiyuan 030024, China

    quinoline, isoquinoline, coal, pyrolysis mechanism, density functional theory

    1 INTRODUCTION

    Emission of nitrogen oxides (NO, NO2and N2O) in the utilization process of coal is an important environmental problem [1]. It is well known that the presence of nitrogen in coal and coal-derived products is mainly in the form of heterocycles such as pyrrole and pyridine ring systems [2, 3]. Pyrrole, pyridine, indole and quinoline are commonly selected as N-containing model compounds in coal. Many detailed experimental and theoretical studies on the pyrolysis of pyrrole [4-9], pyridine [10-13] and indole [14, 15] have been carried out. Quinoline and isoquinoline, both the molecules containing a pyridine ring fused to benzene, are more authentic than pyridine for describing the coal pyrolysis, considering the actual structures of N-containing components in the aromatic matrix of coal.

    The presence of 1-indene imine has not been identified experimentally although it is widely believed to be an important intermediate during pyrolysis of quinoline and isoquinoline. In order to better understand the fact that the total disappearance rates of quinoline and isoquinoline are the same and the pyrolysis products are also the same for both reactants, and in order to verify the importance of 1-indene imine intermediate, we carry out a study on the kinetic mechanism of pyrolysis of quinoline and isoquinoline using quantum chemistry calculation.

    2 COMPUTATION

    Density functional theory (DFT) method of quantum chemistry calculation was adopted and the calculations were performed using the Dmol3program [21] mounted on Materials Studio Modeling 4.0 package. Generalized gradient approximation (GGA) with PW91 function [22] was adopted. The DND basis set, equivalent in accuracy to the 6-31G* Gaussian orbital basis set, was also used. Spin unrestricted was chosen. Total self-consistent field (SCF) tolerance criteria, integration accuracy criteria and orbital cutoff quality criteria were set at medium. Multipolar expansion was set at octupole.

    Table 1 The calculated and experimental bond lengths and bond angles of N-containing compounds

    All the reactants, products and possible intermediates in reaction paths were optimized, and their single point energies (SPE) were determined at the same time. All transition state searches were carried out using the Linear Synchronous Transit/Quadratic Synchronous Transit (LST/QST) method. The vibration analyses about the molecular structure of the species involved in the pyrolysis mechanism were carried out at the same theoretical level to verify whether a stationary point corresponding to the structure was a local minimum (equilibrium structure) or a first-order saddle point (transition state) according to the vibration modes, meanwhile, the corresponding zero-point energies (ZPE) were determined. Transition state confirmation calculation was carried out using the nudged elastic band (NEB) method to confirm that the transition states lead to the desired reactants and products. All calculations were performed in HP Proliant DL 380 G5 server system.

    Figure 1 The pyrolysis mechanisms of quinoline (R) and isoquinoline (Ri)

    In order to evaluate the reliability of the selected calculation method and parameters, some structural parameters of several N-containing heterocyclic compounds were calculated, and the calculated and experimentalresults [23] are shown in Table 1. The calculated results are in agreement with the experimental structural parameters, the largest deviation of bond angles is 0.617°, and the deviation of bond lengths is smaller than 0.002 nm. In addition, some results about the reaction mechanism have been obtained using the above method and parameters in our previous studies [24, 25].

    3 RESULTS AND DISCUSSION

    3.1 The pyrolysis mechanisms of quinoline and isoquinoline

    Table 2 Imaginary frequencies of the transition states and the bonds corresponding to relative normal vibrations

    Figure 2 The optimized structures of all species relating to Path 1A and Path 1B

    Path 1B has the same initial step to IM1 as Path 1A. The next step is that the C4 in IM1 links to C9 to yield an intermediate 1-indene imine (IMa)TS5, then the migration of H17 in IMafrom N10 to C4 also results in the formation of IM2 with an activation energy of 361.93 kJ·mol-1. From IM2 to P1, Path 1B and Path 1A have the same steps.

    Figure 3 Energetic sketch of the stationary points for Path 1A and Path 1B along the reaction process

    Figure 3 shows that the rate determining steps of Path 1A and Path 1B are Step 1 and Step 6, with activation energies of 344.99 kJ·mol-1and 361.93 kJ·mol-1, respectively. There is only a difference of 16.93 kJ·mol-1in the activation energy, so Path 1A and Path 1B may be considered to be the coexistent competitive reaction paths.

    2018年11月,第二十六屆世界計量組織大會將在巴黎召開,屆時將對我們所熟知的基本計量單位做出重大調(diào)整。千克作為國際單位制中質(zhì)量的基本單位,將基于普朗克常數(shù)進行重新定義,而沿用了129年的國際千克原器也將退出歷史舞臺。

    Figure 5 shows that the rate determining steps of Path 2A and Path 2B are Step 1i and Step 7i, with activation energies of 338.94 kJ·mol-1and 370.76 kJ·mol-1, respectively. There is only a difference of 31.82 kJ·mol-1in activation energy, so Path 2A and Path 2B may be considered to be the coexistent competitive reaction paths like the case of Path 1A and Path 1B.

    Figure 4 The optimized structures of all species relating to Path 2A and Path 2B

    Figure 5 Energetic sketch of the stationary points for Path 2A and Path 2B along the reaction process

    It can be seen from Fig. 6 that the activation energies of the rate determining steps are 370.76 kJ·mol-1in Path 3A and 371.37 kJ·mol-1in Path 3B, so Path 3A and 3B are considered to be the coexistent competitive paths.

    Figure 6 Energetic sketch of the stationary points for Path 3A and Path 3B along the reaction process

    Figure 7 Energetic sketch of the stationary points for Path 4A and Path 4B along the reaction process

    It can be seen from Fig. 7 that the activation energies of rate determining steps are 361.93 kJ·mol-1in Path 4A and 383.48 kJ·mol-1in Path 4B, so Path 4A and 4B may be considered to be the coexistent competitive paths.

    3.1.5

    Quinoline goes through three paths (Path 1B, Path 3A and Path 3B) towards IMaand isoquinoline goes through other three paths (Path 2B, Path 4A and Path 4B) towards IMbby the kinetic mechanism involving the intramolecular hydrogen migration, in which the highest energy barriers of 344.99 kJ·mol-1in Step 1 and 338.94 kJ·mol-1in Step 1i have to be overcome, which are close to the experimental activation energies 326.00 kJ·mol-1[17] and 316.47 kJ·mol-1[19]. Because of the similar activation energies, the production rates of 1-indene imine are almost the same, whether the original reactant is quinoline or isoquinoline. Then there is a quick conformational tautomeric equilibrium between IMaand IMbwith activation energies of 113.98 kJ·mol-1and 113.96 kJ·mol-1.

    The common intermediate 1-indene imine goes through three paths (Path 1B, Path 4A and Path 4B) towards P1, and other three paths (Path 2B, Path 3A and Path 3B) towards P2. The calculated results show that the highest energy barriers yielding P1 and P2 are 361.93 kJ·mol-1in Step 6 and 370.76 kJ·mol-1in Step 7i. The highest energy barriers are almost the same, slightly higher than the experimental results [17, 19]. Thus it is concluded that the total disappearance rates of quinoline and isoquinoline are the same, and the composition of the pyrolysis products is also the same, no matter the original reactant is quinoline or isoquinoline, which is in agreement with the experimental results [19, 20].

    3.2 The role of 1-indine imine during quinoline and isoquinoline pyrolysis

    4 CONCLUSIONS

    The kinetic mechanisms of pyrolysis of quinoline and isoquinoline are investigated in detail using the density functional theory of quantum chemistry. The results are summarized as follows:

    (1) A rational reaction mechanism involving eight reaction paths and a common tautomeric intermediate is proposed, and the activation energies of the rate determining steps are obtained. The calculated results are in good agreement with the experimental results.

    (2) The conformational tautomerism of 1-indene imine intermediate plays an important role in the mechanism, which decides the composition of the pyrolysis products to be the same, and also decides the total disappearance rates of the reactants to be the same, whether the original reactant is quinoline or isoquinoline.

    (3) The intramolecular hydrogen migration is an important reaction step, which appears widely in the paths of the pyrolysis mechanism.

    1 Tan, L.L., Li, C.Z., “Formation of NOand SOprecursors during the pyrolysis of coal and biomass. Part ?. Effects of reactor configuration on the determined yields of HCN and NH3during pyrolysis”,, 79, 1883-1889 (2000).

    2 Kelemen, S.R., Gorbaty, M.L., Kwiatek, P.J., Fletcher, T.H., Watt, M., Solum, M.S., Pugmire, R.J, “Nitrogen transformations in coal during pyrolysis”,., 12, 159-173 (1998).

    3 Solomon, P.R., Colket, M.B., “Evolution of fuel nitrogen in coal devolatilization”,, 57, 749-755 (1978).

    4 Mackie, J.C., Colket, M.B., Nelson, P.F., Esler, M., “Shock tube pyrolysis of pyrrole and kinetic modeling”,...., 23, 733-760 (1991).

    5 Lifshitz, A., Tamburu, C., Suslensky, A., “Isomerization and decomposition of pyrrole at elevated temperatures. Studies with a single-pulse shock tube”,..., 93, 5802-5808 (1989).

    6 Dubnikova, F., lifshitz, A., “Isomerization of pyrrole. Quantum chemical calculations and kinetic modeling”,..., 102, 10880-10888 (1998).

    7 Zhai, L., Zhou, X.F., Liu, R.F., “A theoretical study of pyrolysis mechanisms of pyrrole”,..., 103, 3917-3922 (1999).

    8 Martoprawiro, M., Bacskay, G.B., Mackie, J.C., “Ab initio quantum chemical and kinetic modeling study of the pyrolysis kinetics of pyrrole”,..., 103, 3923-3934 (1999).

    9 Bacskay, G.B., Martoprawiro, M., Mackie, J.C., “The thermal decomposition of pyrrole: An ab initio quantum chemical study of the potential energy surface associated with the hydrogen cyanide plus propyne channel”,..., 300, 321-330 (1999).

    10 Mackie, J.C., Colket, M.B, Nelson, P.F., “Shock tube pyrolysis of pyridine”,..., 94, 4099-4106 (1990).

    11 Memon, H.U.R., Bartle, K.D., Taylor, J.M., Williams, A., “The shock tube pyrolysis of pyridine”,...., 24, 1141-1159 (2000).

    12 Liu, R.F., Huang, T.T.S., Tittle, J., Xia, D.H., “A theoretical investigation of the decomposition mechanism of pyridyl radicals”,..., 104, 8368-8374 (2000).

    13 Ninomiya, Y., Dong, Z.B., Suzuki, Y., Koketsu, J., “Theoretical study on the thermal decomposition of pyridine”,, 79, 449-457 (2000).

    14 Laskin, A., Lifshitz, A., “Isomerization and decomposition of indole. Experimental results and kinetic modeling”,..., 101, 7787-7801 (1997).

    15 Zhou, X.F., Liu, R.F., “A density functional theory study of the pyrolysis mechanisms of indole”,...., 461/462, 569-579 (1999).

    16 Patterson, J.M., Issidorides, C.H., Papadopoulos, E.P., Smith, Jr. W.T., “The thermal interconversion of quinoline and isoquinoline”,.., 15, 1247-1250 (1970).

    17 Bruinsma, O.S.L., Tromp, P.J.J., De Sauvage Nolting, H.J.J., Moulijn, J.A., “Gas phase pyrolysis of coal-related aromatic compounds in a coiled tube flow reactor 2. Heterocyclic compounds, their benzo and dienzo derivatives”,, 67, 334-340 (1988).

    18 Axworthy, A.E., Dayan, V.H., Martin, G.B., “Reactions of fuel-nitrogen compounds under conditions of inert pyrolysis”,, 57, 29-35 (1978).

    19 Laskin, A., Lifshitz, A., “Thermal decomposition of quinoline and isoquinoline. The role of 1-indene imine radical”,..., 102, 928-946 (1998).

    20 Winkler, J.K., Karow, W., Rademacher, P., “Gas phase pyrolysis of heterocyclic compounds (3) Flow pyrolysis and annulation reaction of some nitrogen heterocycles. A product oriented study”,, 1 (4), 576-602 (2000).

    21 Delley, B., “From molecules to solids with the Dmol3approach”,..., 113 (18), 7756-7764 (2000).

    22 Perdew, J.P., Chevary, J.A., Vosko, S.H., Fiolhais, C., “Atoms, molecules, solids and surfaces: Application of the generalized gradient approximation for exchange and correlation”,.., 46 (11), 6671-6687 (1992).

    23 Lide, D.R., Handbook of Chemistry and Physics, 82nd edition, CRC Press, New York, 9-40 (2001-2002).

    24 Zhao, L.J., Ling, L.X., Zhang, R.G., Liu, X.F., Wang, B.J., “Theoretical study on pyrolysis mechanism of O-containing model compound anisole in coal”,.... (), 59 (8), 2095-2102 (2008). (in Chinese)

    25 Zhang, R.G., Huang, W., Wang, B.J., “Theoretical calculation for interaction of CO2with ·H and ·CH3in synthesis of acetic acid from CH4and CO2”,... (), 28 (7), 641-645 (2007). (in Chinese)

    2008-10-23,

    2009-07-07.

    the National Basic Research Program of China (2005CB221203), the National Natural Science Foundation of China (20576087, 20776093) and the Foundation of Shanxi Province (2006011022, 2009021015).

    ** To whom correspondence should be addressed. E-mail: wangbaojun@tyut.edu.cn

    猜你喜歡
    歷史舞臺單位制普朗克
    量子理論的奠基者——普朗克
    少兒科技(2021年9期)2021-01-20 23:19:50
    巧用單位制解決高中物理問題
    利用單位制解決一類特殊的物理問題
    環(huán)保稅來了!排污費將退出歷史舞臺——《中華人民共和國環(huán)境保護稅法》將于明年1月1日起實施
    福建輕紡(2017年12期)2017-04-06 01:41:23
    LAST STOP
    漢語世界(2016年6期)2016-12-16 08:42:40
    Last Stop
    淺談普朗克常數(shù)以及它的測定
    河南科技(2014年1期)2014-02-27 14:04:34
    它們還是必需品
    海外英語(2013年4期)2013-08-27 09:38:00
    光電效應測普朗克常數(shù)新數(shù)據(jù)處理方法
    物理與工程(2013年3期)2013-03-11 16:04:31
    Origin8.0在普朗克常數(shù)測定實驗中的應用
    物理與工程(2010年6期)2010-03-25 10:02:37
    亚洲色图综合在线观看| 久久久精品免费免费高清| 国产xxxxx性猛交| 母亲3免费完整高清在线观看| 午夜福利视频在线观看免费| 精品亚洲乱码少妇综合久久| 波多野结衣av一区二区av| 国产不卡一卡二| 亚洲,欧美精品.| 亚洲精品乱久久久久久| 欧美乱码精品一区二区三区| 国产一区有黄有色的免费视频| videosex国产| 99热网站在线观看| 日日摸夜夜添夜夜添小说| 亚洲欧美精品综合一区二区三区| avwww免费| 亚洲精品国产精品久久久不卡| 欧美在线一区亚洲| 欧美中文综合在线视频| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| www.熟女人妻精品国产| 天堂俺去俺来也www色官网| 欧美黑人精品巨大| 十八禁人妻一区二区| 免费久久久久久久精品成人欧美视频| 亚洲av片天天在线观看| 丁香六月欧美| 亚洲精华国产精华精| 一级,二级,三级黄色视频| 久久精品亚洲av国产电影网| 久久这里只有精品19| 成人三级做爰电影| 精品少妇久久久久久888优播| 国产亚洲精品一区二区www | 五月开心婷婷网| 香蕉丝袜av| 最近最新免费中文字幕在线| 国产精品偷伦视频观看了| 日本vs欧美在线观看视频| 亚洲avbb在线观看| 啦啦啦在线免费观看视频4| 久久精品亚洲av国产电影网| 69精品国产乱码久久久| 大码成人一级视频| 少妇 在线观看| 日韩精品免费视频一区二区三区| 丝袜人妻中文字幕| 久久青草综合色| 欧美日韩黄片免| 男女床上黄色一级片免费看| 视频区图区小说| 久久 成人 亚洲| 日韩免费av在线播放| 欧美日本中文国产一区发布| 久久香蕉激情| 亚洲午夜理论影院| 丁香六月天网| 夜夜爽天天搞| 亚洲情色 制服丝袜| 亚洲成人免费电影在线观看| 国产亚洲欧美在线一区二区| 十分钟在线观看高清视频www| 亚洲午夜理论影院| av在线播放免费不卡| 在线看a的网站| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 亚洲第一青青草原| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 精品亚洲乱码少妇综合久久| 国产精品久久久久久人妻精品电影 | 夜夜爽天天搞| 黄色怎么调成土黄色| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 亚洲五月色婷婷综合| 国产一卡二卡三卡精品| 99精品久久久久人妻精品| 亚洲精品av麻豆狂野| 好男人电影高清在线观看| 成人亚洲精品一区在线观看| 日韩中文字幕视频在线看片| 麻豆乱淫一区二区| 亚洲精品国产精品久久久不卡| 人人妻人人澡人人看| 99久久99久久久精品蜜桃| av天堂在线播放| 亚洲性夜色夜夜综合| 亚洲免费av在线视频| 夜夜骑夜夜射夜夜干| 国产在线观看jvid| 欧美亚洲 丝袜 人妻 在线| 搡老乐熟女国产| 黄色 视频免费看| 国产一区二区三区综合在线观看| 黄色毛片三级朝国网站| 美女国产高潮福利片在线看| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 亚洲欧美精品综合一区二区三区| www日本在线高清视频| 亚洲中文字幕日韩| 日韩欧美国产一区二区入口| av在线播放免费不卡| 免费高清在线观看日韩| 香蕉国产在线看| 一级片'在线观看视频| 91精品国产国语对白视频| 亚洲三区欧美一区| 丝瓜视频免费看黄片| 大陆偷拍与自拍| 狂野欧美激情性xxxx| 大片免费播放器 马上看| 午夜免费成人在线视频| 女人久久www免费人成看片| 叶爱在线成人免费视频播放| 麻豆国产av国片精品| 精品国产乱码久久久久久男人| 最近最新免费中文字幕在线| 日本wwww免费看| 中文字幕最新亚洲高清| www日本在线高清视频| 亚洲精品在线观看二区| 国产野战对白在线观看| 变态另类成人亚洲欧美熟女 | 亚洲欧洲精品一区二区精品久久久| 国产99久久九九免费精品| 在线十欧美十亚洲十日本专区| 国产成人欧美| 欧美变态另类bdsm刘玥| 日本a在线网址| 三级毛片av免费| 香蕉久久夜色| 午夜福利,免费看| 久久香蕉激情| 曰老女人黄片| 午夜福利,免费看| 一区二区av电影网| 精品福利观看| 国产午夜精品久久久久久| 国产区一区二久久| 黄色视频在线播放观看不卡| 亚洲中文av在线| 国产97色在线日韩免费| 午夜激情av网站| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 在线 av 中文字幕| 国产不卡av网站在线观看| 欧美日韩成人在线一区二区| 精品国产一区二区久久| e午夜精品久久久久久久| 免费一级毛片在线播放高清视频 | 久久免费观看电影| 久久久水蜜桃国产精品网| 十八禁网站免费在线| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| 欧美精品亚洲一区二区| 国产三级黄色录像| 久久精品国产99精品国产亚洲性色 | 日韩制服丝袜自拍偷拍| a级毛片在线看网站| 人人妻人人添人人爽欧美一区卜| 亚洲少妇的诱惑av| 桃红色精品国产亚洲av| 国产成+人综合+亚洲专区| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 99国产精品一区二区三区| 蜜桃在线观看..| 无人区码免费观看不卡 | 高清毛片免费观看视频网站 | 免费不卡黄色视频| 妹子高潮喷水视频| 丝袜美腿诱惑在线| 一级毛片电影观看| 国产亚洲精品第一综合不卡| 国产av又大| 在线观看舔阴道视频| 一区二区日韩欧美中文字幕| 国产精品秋霞免费鲁丝片| 757午夜福利合集在线观看| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 不卡av一区二区三区| 国产在线一区二区三区精| 午夜精品国产一区二区电影| 久久精品熟女亚洲av麻豆精品| 亚洲精品美女久久av网站| 大香蕉久久成人网| 国产精品一区二区在线不卡| 日本欧美视频一区| 精品国产乱码久久久久久小说| 在线 av 中文字幕| 久久国产精品大桥未久av| 成人影院久久| 天天影视国产精品| 精品国产乱码久久久久久小说| 久久久久网色| 性高湖久久久久久久久免费观看| 一级片'在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久精品吃奶| 亚洲欧美一区二区三区久久| 人妻一区二区av| aaaaa片日本免费| 亚洲三区欧美一区| 人成视频在线观看免费观看| 国产精品电影一区二区三区 | 国产福利在线免费观看视频| netflix在线观看网站| 国产免费av片在线观看野外av| 一进一出抽搐动态| 亚洲欧美激情在线| 精品亚洲成a人片在线观看| 91成年电影在线观看| 久久久久视频综合| 亚洲伊人色综图| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 亚洲人成77777在线视频| 国产片内射在线| 涩涩av久久男人的天堂| 99精品久久久久人妻精品| 成年版毛片免费区| 丝袜美腿诱惑在线| 精品少妇内射三级| 91精品三级在线观看| 777米奇影视久久| 久久久久久久大尺度免费视频| 久久精品国产亚洲av高清一级| 国产一区二区 视频在线| 极品少妇高潮喷水抽搐| 一进一出抽搐动态| 丝袜在线中文字幕| 黄片大片在线免费观看| 亚洲欧美精品综合一区二区三区| 亚洲国产精品一区二区三区在线| 一区二区三区国产精品乱码| 亚洲精品美女久久久久99蜜臀| 国产男女内射视频| 午夜免费成人在线视频| 一进一出抽搐动态| 成人av一区二区三区在线看| 一级片免费观看大全| 黑人操中国人逼视频| 日韩欧美一区视频在线观看| 亚洲五月婷婷丁香| 精品久久久久久电影网| 51午夜福利影视在线观看| 最新在线观看一区二区三区| 国精品久久久久久国模美| 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 国产精品98久久久久久宅男小说| 国产精品免费一区二区三区在线 | 天天躁夜夜躁狠狠躁躁| 90打野战视频偷拍视频| 极品人妻少妇av视频| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 香蕉国产在线看| 成年版毛片免费区| 亚洲一码二码三码区别大吗| 欧美人与性动交α欧美软件| 久久国产精品大桥未久av| 怎么达到女性高潮| 免费在线观看完整版高清| 高清av免费在线| 亚洲少妇的诱惑av| 久久久国产成人免费| 黄色成人免费大全| 欧美精品人与动牲交sv欧美| www日本在线高清视频| 亚洲人成77777在线视频| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 欧美日韩福利视频一区二区| 999精品在线视频| 麻豆av在线久日| 中文字幕精品免费在线观看视频| av有码第一页| av国产精品久久久久影院| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 亚洲国产毛片av蜜桃av| 一本—道久久a久久精品蜜桃钙片| 日韩免费av在线播放| 91国产中文字幕| 亚洲欧美精品综合一区二区三区| 免费女性裸体啪啪无遮挡网站| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区| 人人澡人人妻人| 久热这里只有精品99| 91麻豆av在线| 美女午夜性视频免费| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三区在线| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区黑人| 操美女的视频在线观看| 欧美精品啪啪一区二区三区| 一区福利在线观看| 欧美日韩视频精品一区| 午夜福利视频精品| 亚洲,欧美精品.| svipshipincom国产片| tube8黄色片| 国产一区二区在线观看av| 飞空精品影院首页| 在线观看免费午夜福利视频| 老熟妇仑乱视频hdxx| 成人手机av| 久热爱精品视频在线9| 大型av网站在线播放| 国产在视频线精品| 亚洲九九香蕉| 色综合婷婷激情| 久久久水蜜桃国产精品网| 人人澡人人妻人| 亚洲成人国产一区在线观看| 亚洲精品国产色婷婷电影| 国产又爽黄色视频| 高清av免费在线| 天天影视国产精品| 欧美另类亚洲清纯唯美| 国产xxxxx性猛交| 久久久久视频综合| 国产真人三级小视频在线观看| 色婷婷av一区二区三区视频| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| 欧美+亚洲+日韩+国产| 精品熟女少妇八av免费久了| 亚洲国产成人一精品久久久| 女警被强在线播放| 日本五十路高清| 亚洲国产av新网站| 丁香六月天网| 欧美一级毛片孕妇| 国产淫语在线视频| 国产激情久久老熟女| 亚洲第一av免费看| av网站在线播放免费| 丁香欧美五月| 一级片'在线观看视频| 精品一区二区三卡| 国产男女内射视频| 久久天堂一区二区三区四区| 两个人看的免费小视频| 精品人妻熟女毛片av久久网站| 我的亚洲天堂| 久久久水蜜桃国产精品网| xxxhd国产人妻xxx| 国产精品九九99| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 免费一级毛片在线播放高清视频 | netflix在线观看网站| 午夜福利欧美成人| 久久人人97超碰香蕉20202| av视频免费观看在线观看| 天天操日日干夜夜撸| 99九九在线精品视频| 亚洲精品一二三| 嫁个100分男人电影在线观看| 美国免费a级毛片| 国产伦理片在线播放av一区| 黄色丝袜av网址大全| 一进一出好大好爽视频| 50天的宝宝边吃奶边哭怎么回事| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 国产精品99久久99久久久不卡| 最近最新免费中文字幕在线| 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 超碰97精品在线观看| 久久久国产成人免费| 999久久久国产精品视频| 久9热在线精品视频| 国产欧美日韩一区二区三区在线| 色婷婷av一区二区三区视频| 欧美在线黄色| svipshipincom国产片| 1024香蕉在线观看| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 免费女性裸体啪啪无遮挡网站| 在线十欧美十亚洲十日本专区| cao死你这个sao货| 中文亚洲av片在线观看爽 | 欧美精品人与动牲交sv欧美| 男男h啪啪无遮挡| 国产精品香港三级国产av潘金莲| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 99re6热这里在线精品视频| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 一级毛片电影观看| 女人高潮潮喷娇喘18禁视频| 麻豆国产av国片精品| 日韩免费av在线播放| 日韩一卡2卡3卡4卡2021年| videos熟女内射| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 丰满人妻熟妇乱又伦精品不卡| 欧美黄色片欧美黄色片| 成人精品一区二区免费| 51午夜福利影视在线观看| 97人妻天天添夜夜摸| 最新的欧美精品一区二区| 另类精品久久| 国产成人一区二区三区免费视频网站| 在线观看一区二区三区激情| 欧美国产精品一级二级三级| 精品少妇黑人巨大在线播放| 免费一级毛片在线播放高清视频 | 国产精品免费视频内射| 欧美日韩视频精品一区| 狠狠狠狠99中文字幕| 国产老妇伦熟女老妇高清| av超薄肉色丝袜交足视频| 一边摸一边做爽爽视频免费| 操出白浆在线播放| 精品亚洲成国产av| 亚洲欧洲日产国产| 高清视频免费观看一区二区| 王馨瑶露胸无遮挡在线观看| 最近最新中文字幕大全免费视频| 建设人人有责人人尽责人人享有的| 欧美日韩视频精品一区| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 国产精品一区二区在线观看99| 51午夜福利影视在线观看| 精品国产国语对白av| 午夜福利免费观看在线| 久久 成人 亚洲| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| avwww免费| av又黄又爽大尺度在线免费看| 国产日韩欧美亚洲二区| 极品人妻少妇av视频| 亚洲全国av大片| 亚洲人成电影免费在线| 飞空精品影院首页| 久久香蕉激情| 热re99久久精品国产66热6| 国产福利在线免费观看视频| 国产在视频线精品| 国产av精品麻豆| 国精品久久久久久国模美| 亚洲精品粉嫩美女一区| 可以免费在线观看a视频的电影网站| 欧美日韩亚洲国产一区二区在线观看 | 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 法律面前人人平等表现在哪些方面| 久久久久久久大尺度免费视频| 久久精品亚洲av国产电影网| 少妇 在线观看| 母亲3免费完整高清在线观看| 高清欧美精品videossex| 国产成人精品在线电影| 国产一区二区 视频在线| 国产欧美日韩一区二区三| 成人18禁在线播放| 一区福利在线观看| av网站在线播放免费| 精品国产一区二区三区四区第35| 一本色道久久久久久精品综合| av天堂在线播放| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 亚洲国产欧美在线一区| 91成人精品电影| 国产单亲对白刺激| 一本一本久久a久久精品综合妖精| 国产成人免费无遮挡视频| 高清黄色对白视频在线免费看| 久久久久久免费高清国产稀缺| 国产av又大| 在线亚洲精品国产二区图片欧美| 一边摸一边抽搐一进一小说 | 精品免费久久久久久久清纯 | 亚洲va日本ⅴa欧美va伊人久久| 露出奶头的视频| 精品卡一卡二卡四卡免费| 国产精品av久久久久免费| 99国产精品99久久久久| 亚洲av电影在线进入| 国产免费视频播放在线视频| 91精品三级在线观看| 91老司机精品| 欧美黑人欧美精品刺激| 天堂8中文在线网| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看 | 久久九九热精品免费| 999精品在线视频| 国产熟女午夜一区二区三区| 欧美精品高潮呻吟av久久| 久久影院123| 国产精品av久久久久免费| 午夜两性在线视频| 久久久久久亚洲精品国产蜜桃av| kizo精华| 国产在视频线精品| 欧美乱妇无乱码| 丝袜喷水一区| 国产成人av激情在线播放| 久久人妻熟女aⅴ| 日本黄色视频三级网站网址 | 午夜福利影视在线免费观看| 一区二区三区精品91| 色在线成人网| 人人妻人人添人人爽欧美一区卜| 国产免费福利视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 美女扒开内裤让男人捅视频| 亚洲熟妇熟女久久| 成年人午夜在线观看视频| av福利片在线| 久久久精品免费免费高清| 色综合婷婷激情| 最新的欧美精品一区二区| 国产亚洲精品第一综合不卡| 淫妇啪啪啪对白视频| 国产一区二区激情短视频| 天天躁日日躁夜夜躁夜夜| 日本a在线网址| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 亚洲 欧美一区二区三区| 免费高清在线观看日韩| 两人在一起打扑克的视频| 精品国产乱子伦一区二区三区| 一本一本久久a久久精品综合妖精| 黄色a级毛片大全视频| 另类亚洲欧美激情| 脱女人内裤的视频| 午夜福利在线免费观看网站| 亚洲欧洲精品一区二区精品久久久| av视频免费观看在线观看| 91大片在线观看| 99精品欧美一区二区三区四区| 国产免费视频播放在线视频| 国产精品av久久久久免费| 欧美激情久久久久久爽电影 | 免费不卡黄色视频| 天天影视国产精品| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 亚洲精品一卡2卡三卡4卡5卡| aaaaa片日本免费| 高清视频免费观看一区二区| 美国免费a级毛片| 波多野结衣一区麻豆| 国产不卡一卡二| 精品卡一卡二卡四卡免费| 青草久久国产| 精品视频人人做人人爽| 王馨瑶露胸无遮挡在线观看| 欧美乱妇无乱码| 精品一品国产午夜福利视频| netflix在线观看网站| 香蕉国产在线看| 亚洲精品久久成人aⅴ小说| 丁香六月欧美| 99riav亚洲国产免费| 欧美精品高潮呻吟av久久| 黄色毛片三级朝国网站| 汤姆久久久久久久影院中文字幕| 搡老岳熟女国产| 精品高清国产在线一区| 国产精品成人在线| 国产精品香港三级国产av潘金莲| 精品国产国语对白av| 亚洲熟女精品中文字幕| 午夜福利一区二区在线看| 夜夜骑夜夜射夜夜干| 免费在线观看黄色视频的| 亚洲,欧美精品.| 激情在线观看视频在线高清 | 天天躁日日躁夜夜躁夜夜| 最新的欧美精品一区二区| 国产在线一区二区三区精| 欧美中文综合在线视频| 亚洲精品粉嫩美女一区| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 成人影院久久|