• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gas Flow in Unilateral Opening Pulse Tubes Based on Real Gas Equation of State

    2009-05-15 01:39:50DAIYuqiang代玉強HUDapeng胡大鵬ZOUJiupeng鄒久朋andZHAOJiaquan趙家權(quán)
    關(guān)鍵詞:趙家大鵬

    DAI Yuqiang (代玉強), HU Dapeng (胡大鵬), ZOU Jiupeng (鄒久朋) and ZHAO Jiaquan (趙家權(quán))

    ?

    Gas Flow in Unilateral Opening Pulse Tubes Based on Real Gas Equation of State

    DAI Yuqiang (代玉強)*, HU Dapeng (胡大鵬), ZOU Jiupeng (鄒久朋) and ZHAO Jiaquan (趙家權(quán))

    School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China

    The real gas effect is dominant at high pressure and low temperature, and it is modeled by complex equations of state other than perfect gas law. In the vicinity of liquid-vapor critical point, the real gas exhibits unusual gas dynamic behavior. In the present work, a transient wave fields in unilateral opening pulse tube is simulated by solving the Navier-Stokes equations incorporated with the Peng-Robinson thermodynamic model. The computational fluid dynamics (CFD) results show a remarkable deviation between perfect gas model and real gas model for contact interface and shockwave. The wave diagram based on the real gas model can help to solve the problem of offset design point.

    real gas flow, pulse tube, expansion refrigeration, unsteady flow

    1 INTRODUCTION

    Gas wave machine (GWM) has been widely used in natural gas processing industry in the last decade, but the designers are often perplexed with the off-design problems. The obstacles are mainly originated from unusual flow complexity and uncertainties about the selection of the best wave rotor configuration for a particular application. The main reason is that high molecular weight gas mixtures in pulse tubes of GWM at low temperature and high pressure may exhibit nonclassical phenomena in vapor region near the liquid-vapor critical point. They cannot get the precise port timing information from the GWM’s physical diagram or wave diagram under the assumption of idealgas model. Researchers refer to fluids that show nonclassicalflow properties as Bethe-Zel’dovich-Thompson (BZT) fluids [1]. In the nonclassical flow, the subsonic characteristic is extended to high Mach numbers [2, 3]; compression shockwaves disintegrate into a compression fan when entering the nonclassical region. Conversely, expansion waves may coalesce into expansion shockwaves. The main reason is the non-monotone variation of the Mach number with respect to density [4]. Thompson [5] first found that the sign of the fundamental derivative of gas dynamicsgoverns the nonlinear characters of gases:

    The BZT fluid dynamics can be applied in many areas such as the organic Rankine cycle processes [6, 7] using organic substance like toluene as working fluid, Stirling engines, thermo-acoustic engines, supercritical fluids, refrigerants, and many types of multi-phase flows [8] for petrochemical processes and so on.

    The application of computational fluid dynamics (CFD) to the above area is not widely spread. A main reason is the lack of a proper model for the fluid physical properties, since solvers are developed in most cases of the perfect gas behavior [9]. Fortunately, the computation of dense gas flows has received increasing attention in the last decade [4, 10-12], motivated by the mentioned engineering applications [13-15].

    The main problem is how to couple the real gas state equation with the Navior-Stokes equations. We should choose a suitable method that is fast, accurate for CFD computations and flexible for the use with general state equations. The feasible approaches to this problem can be direct state equation representation and look-up table (LUT) algorithms [9]. The former method is the most straightforward one and, being analytical, has the advantage of the greatest numerical accuracy. It is actually an extension of the perfect gas model. The main drawback is the low computational efficiency. The later LUT method is based on the discretization of the actual state equation onto a structured mesh. This approach cuts down the computational effort in the solver. Some commercial CFD code like Fluent can use table look-up procedures obtained from the REFPROP developed by National Institute of Standards and Technology (NIST). Unfortunately, the REFPROP database does not supply a large number of pure fluids, especially those involved in deep refrigeration of natural gas industry. It follows that the creation of general LUT based specific PVT model like Peng-Robinson [16] thermodynamic model is necessary.

    2 GOVERNING EQUATIONS AND THERMODYNAMIC MODELS OF REAL GASES

    For using a general equation of state (EoS), the governing equations of motion for a general Newtonian fluid with an arbitrary equation of state and variable properties should be written in two-dimensional primitive form as

    The diffusive matrixis related with viscosity of fluid [8]:

    and

    Total energyis related to the enthalpyby

    To realize the real flow analysis, an appropriate PVT relation and appropriate mixing rules should be chosen to calculate the key properties of the fluids like density, heat capacity, sound speed, viscosity and thermal conductivity. Peng-Robinson state equation is chosen for its high precision in prediction of vapor-liquid equilibria for systems containing non-polar components [16]:

    Figure 1 Sound speed (m·s-1) of C1/C2/C3mixtures (mass compositions: C179%-C28%-C313%) from the LUT based on Peng-Robinson EoS (solid) and Benedict-Webb-Rubin-Starling(BWRS) EoS [17] (dash)

    3 REAL GAS FLOW IN PULSE TUBE

    3.1 Numerical procedure

    Pulse tubes are the main working parts in thermal separators, widely used in natural gas refrigeration industry. The movement behavior of contact interfaces between driving and driven gas and shockwaves formed in pulse tubes are of great importance for designing GWM and pressure exchanging refrigerators (PER). The model of a pulse tube is shown in Fig. 2: the unilateral opening tube is 200 mm long; the pressure in the pulse tube is 5.0 MPa with a sudden 15.0 MPa stream jetting at left. The fluids are chosen to be methane and methane/ethane/propane (C1/C2/C3) mixtures. A strong shockwave and a contact interface will form in the tube, and the shockwave will reflect at the right wall, then the reflective shockwave will meet with the contact interface.

    Figure 2 CFD model of the pulse tube

    Figure 3 Wave diagram of the pulse tube with pure methane gas (pressure ratio: 15 MPa/5 MPa, temperature: 300 K/300 K)

    ◇?real shockwave;□?real interface;△?ideal shockwave;○?ideal interface

    Figure 4 Wave diagram of the pulse tube with C1/C2/C3mixture: C179%-C28%-C313% (pressure ratio: 15 MPa/5 MPa, temperature: 300 K/300 K)

    ○?ideal interface;△?ideal shockwave;◇?real shockwave;□?real interface

    The whole process of real flow in the tube will be shown in comparion with that based on perfect gas. A unified representation of mixtures is given by Amagat’s law [18] capable of handling arbitrary equations of state like Peng-Robinson thermodynamic equation.

    3.2 Numerical results

    Figure 3 shows the wave diagram of the pulse tube with pure methane gas. The contact interface and shockwave computed from ideal EoS are almost coincides with those from Peng-Robinson EoS. The real gas effect is not obvious for methane at 15 MPa and 300 K. The main reason is that methane has small molar weight and the state at given pressure and temperature is far from the dew point. It is shown that we can use perfect gas model when the flow takes place far from the dew point of fluid.

    ○?ideal; +?real

    But when the flow takes place in the vicinity of saturated vapor line or in the supercritical zone, the fundamental derivative of gas dynamicscan be smaller than unity [10], as governs the nonlinear dynamics of gases. Fig. 4 shows the wave diagram of the pulse tube with methane, ethane and propane mixtures. The mass compositions are 79%, 8% and 13% respectively. There are remarkable deviations between perfect gas model and real gas model for contact interface and shockwave. The slopes of incidence shockwave and the contact interface lines from real gas flow results are lower than those based on perfect gas. It is follows that there should be a larger velocity in real gas flows which can guide engineers to design the rotational thermal separators (RTS). By analyzing its real flow, the main the problem of offset design point is now resolved.

    Figure 5 shows the temperature effect of the reflective shockwave meets with contact interface at 0.007 ms. The arrows show the propagating direction of shock and contact interface. For the real gas flow there is lower temperature rise. So if designing RTS using the ideal gas model, one will get a conservative design offset.

    For refrigeration applications in natural gas industry, the unsteady characteristics of natural gas flow in the pulse tubes are also analyzed. The thermal separation properties and various wave velocities are invested. The natural gas components’ mass fractions are C1-87.5%, C2-5.62%, C3-2.13%,-C4--C4-0.034%,-C5--C5-0.016%,-C6and above 0.0, CO2-2.29% and N2-2.41%. The PVT relation is also from Peng-Robinson EoS and Fig. 6 shows the phase envelope curves. The CFD model is the same as before. To avoid supersaturation, the initial temperature in the tubes is set as 320 K. By plotting the contours of temperature and pressure values inandcoordinates, we can get the wave diagram (like Fig. 7) of the pulse tube from which the thermal separation properties and wave velocities is easily achieved. Tables 1 and 2 show the wave speeds and temperatures of each zone shown in Fig. 3. From the temperature contour plot, we can get the precise thermal properties of the pulse tubes and from the wave speeds information we can know the port timing and port positions.

    Figure 6 Envelope line of natural gas in pressure-temperature diagram (Natual gas mass fractions: C1-87.5%, C2-5.62%, C3-2.13%, C4-0.034%, C5-0.016%, CO2-2.29%, N2-2.41%)

    ◇?NG dew point;△?NG bubble point;○?C1bubble/dew point

    Figure 7 Contour plot of temperature in-diagram based on real and ideal models

    Table1 Wave speed (m·s-1) of natural gas fromPeng-Robinson EoS at different pressure ratios

    Table 2 Temperature (K) of each zone (in Fig.3) byPeng-Robinson EoS at different pressure ratios

    4 CONCLUSIONS

    Flow of high molecular weight gases or gas mixtures that in the vicinity of saturated vapor line shows no classical patterns. A flow model coupled with Peng-Robinson state of equation other than perfect gas has been used to analyze the real flow in pulse tubes of GWM or PER. The calculation results have shown more precise behavior of various discontinuities. And a more reliable wave diagram is achieved to guide designing. With the help of real gas flow results, we have solved the offset design problem when using RTS in natural gas industry.

    Nomenclature

    c,critical parameters

    sound speed, m·s-1

    total energy, J·kg-1

    ,cartesian flux vector

    specific internal energy, J·kg-1

    precondition Jacobian matrix

    specific enthalpy, J·kg-1

    igspecific enthalpy at constant density of ideal gas, J·kg-1

    thermal conductivity, W·m-1·K-1

    pressure, Pa

    primitive variable vector

    gas constant, J·kg-1·K-1

    diffusive matrix

    rreduced temperature, K

    ,fluid speed inanddirection, m·s-1

    (r) function of reduced temperature

    ratio of specific heat capacity

    viscosity, Pa·s

    density, kg·m-3

    specific volume, m3·kg-1

    eccentric factor

    1 Cramer, M.S., Nonclassical Dynamics of Classical Gases, Nonlinear Waves in Real Fluid, Springer Press, New York, 91-145 (1991).

    2 Bober, W., Chow, W., “Nonideal isentropic gas flow through converging-diverging nozzles”,., 112, 455-460 (1990).

    3 Aungier, R.H., “A fast, accurate real gas equation of state for fluid dynamic analysis applications”,., 117, 277-281 (1995).

    4 Brown, B.P., Argrow, B.M., “Nonclassical dense gas flows for simple geometries”,., 36 (10), 1842-1847 (1998).

    5 Thompson, P.A., “A fundamental derivative in gas dynamics”,., 14 (9), 1843-1849 (1971).

    6 Hoffren, J., Talonpoika, T., Larjola, J., Siikonen, T., “Numerical simulation of real-gas flow in a supersonic turbine nozzle ring”,.., 124, 395-403 (2002).

    7 Brown, B., Argrow, B., “Application of Bethe-Zel’dovic-Thompson fluids in organic Rankine cycle engines”,.., 16 (6), 1118-1123 (2000).

    8 Merkle, C.L., Sullivan, J.Y., Buelow, E.O., Venkateswaran, S., “Computation of flows with arbitrary equation of state”,., 36 (4), 515-521 (1998).

    9 Cirri, M., Adami, P., Martelli, F., “Development of a CFD real gas flow solver for hybrid grid”,...., 47, 931-938 ( 2005).

    10 Chandrasekar, D., Prasad, P., “Transonic flow of a fluid with positive and negative nonlinearity through a nozzle”,., 3 (3), 427-438 (1991).

    11 Cramer, M., Best, L., “Steady, isoentropic flows of dense gases”,., 3 (1), 219-226 (1991).

    12 Cramer, M., Kluwick, A., Watson, L., Pelz, W., “Dissipative waves in fluids having both positive and negative nonlinearity”,.., 169, 323-336 (1986).

    13 Cinnella, P., “Roe-type schemes for dense gas flow computations”,., 35,1264-1281 (2006).

    14 Choi, J.Y., Oh, S.J., Jeung, I.S., “Correction of Roe’s approximate Riemann solver for real gas equation of state”, AIAA 2002-3293 (2002).

    15 Brown, B., Argrow, B., “Two-dimensional shock tube flow for dense gases”,.., 349, 95-115 (1997).

    16 Peng, D.Y., Robinson, D.B., “A new two-constant equation of state”,...., 15 (9), 59-64 (1976).

    17 Starling, K.E., Han, M.S., “Thermo data refined for LPG (14) Mixture”,, 51 (5), 129-132 (1972).

    18 Li, D., Sankaran, V., Lindau, J.W., Merkle, C.L., ”A unified computational formulation for multi-component and multi-phase flows”, AIAA 2005-1391 (2005).

    19 Chima, R.V., Liou, M.S., “Comparison of the AUSM+ and H-CUSP schemes for turbo machinery applications”, NASA-TM 212457 (2003).

    20 Liou, M.S., “A sequel to AUSM: AUSM+”,..., 129, 364 -382 (1996).

    21 Liou, M.S., Steffen, Jr., C.J., “A new flux splitting scheme”,..., 107, 23-39 (1993).

    2009-02-19,

    2009-10-13.

    * To whom correspondence should be addressed. E-mail: daiyq@chem.dlut.edu.cn

    猜你喜歡
    趙家大鵬
    周鵬飛:大鵬展翅 跨界高飛
    華人時刊(2022年7期)2022-06-05 07:33:46
    趙家祥教授
    觀察與思考(2022年3期)2022-04-22 10:32:20
    Airport gate assignment problem with deep reinforcement learning①
    看圖紙
    三棱錐中的一個不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    虱子
    AComparingandContrastingAnalysisofCooperationandPoliteness
    Development and Prospectives of Ultra-High-Speed Grinding Technology
    99九九线精品视频在线观看视频| 国内揄拍国产精品人妻在线| 婷婷色av中文字幕| 亚洲精品久久午夜乱码| 毛片一级片免费看久久久久| 在线免费十八禁| 亚洲欧美清纯卡通| 日韩欧美精品免费久久| 成人av在线播放网站| 乱系列少妇在线播放| 丰满少妇做爰视频| 国产人妻一区二区三区在| 麻豆精品久久久久久蜜桃| 亚洲国产精品成人久久小说| 国产一级毛片在线| 欧美极品一区二区三区四区| 亚洲天堂国产精品一区在线| 精品人妻一区二区三区麻豆| 久久精品国产鲁丝片午夜精品| 免费人成在线观看视频色| 久久久久久久久中文| 亚洲欧美日韩东京热| 高清视频免费观看一区二区 | .国产精品久久| 成年版毛片免费区| 精品酒店卫生间| 国产高清不卡午夜福利| 亚洲成色77777| 亚洲经典国产精华液单| 一级毛片黄色毛片免费观看视频| 精品熟女少妇av免费看| 神马国产精品三级电影在线观看| 男女边摸边吃奶| 男女啪啪激烈高潮av片| 日韩欧美精品v在线| 久久国产乱子免费精品| 国产成人91sexporn| 国产精品一区二区三区四区久久| 国产精品av视频在线免费观看| 亚洲精品日韩av片在线观看| 国产精品女同一区二区软件| 日本黄色片子视频| 日本熟妇午夜| 婷婷色综合大香蕉| av国产久精品久网站免费入址| 亚洲人成网站在线播| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 成人漫画全彩无遮挡| 久久久久性生活片| 欧美日本视频| 婷婷色麻豆天堂久久| 爱豆传媒免费全集在线观看| 亚洲av福利一区| 床上黄色一级片| 成人特级av手机在线观看| 国产精品嫩草影院av在线观看| 老女人水多毛片| 人体艺术视频欧美日本| 最近最新中文字幕免费大全7| 精品久久久精品久久久| 亚洲人成网站在线播| 黄色一级大片看看| 美女主播在线视频| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 99视频精品全部免费 在线| 日本wwww免费看| 国产精品久久久久久av不卡| 国产色爽女视频免费观看| 免费观看在线日韩| 国产欧美另类精品又又久久亚洲欧美| 最近的中文字幕免费完整| 中文字幕av在线有码专区| 国产av在哪里看| 最近视频中文字幕2019在线8| 久久久久性生活片| 网址你懂的国产日韩在线| 亚洲怡红院男人天堂| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 国内精品一区二区在线观看| 26uuu在线亚洲综合色| 久久韩国三级中文字幕| 精品久久久噜噜| 纵有疾风起免费观看全集完整版 | 久久久久精品性色| 国产麻豆成人av免费视频| 国产成人91sexporn| 精品午夜福利在线看| 最近视频中文字幕2019在线8| av在线天堂中文字幕| 久久久久九九精品影院| 禁无遮挡网站| 国产麻豆成人av免费视频| 午夜福利成人在线免费观看| 亚洲人成网站高清观看| 天天躁夜夜躁狠狠久久av| 国产亚洲最大av| 人妻系列 视频| 亚洲无线观看免费| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| 日韩成人av中文字幕在线观看| 欧美极品一区二区三区四区| 精品国产露脸久久av麻豆 | 中文乱码字字幕精品一区二区三区 | 一区二区三区高清视频在线| 免费大片18禁| 亚洲图色成人| 日韩欧美 国产精品| 天堂√8在线中文| 毛片一级片免费看久久久久| 99热全是精品| 日日啪夜夜爽| 国产成人免费观看mmmm| 国产成年人精品一区二区| 国产精品日韩av在线免费观看| 精品一区在线观看国产| 一级a做视频免费观看| 偷拍熟女少妇极品色| 国内精品宾馆在线| 九九爱精品视频在线观看| 国产一区有黄有色的免费视频 | 在线观看av片永久免费下载| 深爱激情五月婷婷| 国产91av在线免费观看| 网址你懂的国产日韩在线| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 日日啪夜夜爽| 亚洲第一区二区三区不卡| 国产精品一及| 亚洲成人久久爱视频| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 亚洲综合精品二区| 欧美潮喷喷水| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 2021天堂中文幕一二区在线观| 天天躁夜夜躁狠狠久久av| 国产乱人视频| av.在线天堂| 大话2 男鬼变身卡| eeuss影院久久| 亚洲精品国产成人久久av| 美女cb高潮喷水在线观看| 精品久久久久久久久久久久久| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久 | 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影| 在线 av 中文字幕| 免费大片黄手机在线观看| 免费电影在线观看免费观看| 欧美3d第一页| 午夜福利网站1000一区二区三区| 我要看日韩黄色一级片| 中文在线观看免费www的网站| 久久热精品热| 能在线免费看毛片的网站| 日韩一区二区视频免费看| 街头女战士在线观看网站| 国产精品久久视频播放| 美女被艹到高潮喷水动态| 亚洲自拍偷在线| 午夜福利在线观看吧| 国产欧美日韩精品一区二区| 亚洲av成人精品一二三区| 婷婷色综合www| 极品少妇高潮喷水抽搐| 黄色一级大片看看| 久久99精品国语久久久| 高清日韩中文字幕在线| 夫妻午夜视频| 女人十人毛片免费观看3o分钟| 国产精品一二三区在线看| 99久久九九国产精品国产免费| 日韩三级伦理在线观看| 蜜桃亚洲精品一区二区三区| 天天躁夜夜躁狠狠久久av| 国产av国产精品国产| 国产成人精品一,二区| 国产黄色免费在线视频| 久久国内精品自在自线图片| 成人欧美大片| 九九久久精品国产亚洲av麻豆| 在现免费观看毛片| 九草在线视频观看| 国国产精品蜜臀av免费| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 免费av观看视频| 身体一侧抽搐| 亚洲一级一片aⅴ在线观看| 日本一二三区视频观看| 久久鲁丝午夜福利片| 日韩欧美三级三区| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 国精品久久久久久国模美| 欧美一级a爱片免费观看看| 国产午夜精品久久久久久一区二区三区| 天天躁日日操中文字幕| 欧美变态另类bdsm刘玥| 亚洲美女视频黄频| 干丝袜人妻中文字幕| 人体艺术视频欧美日本| 国产视频首页在线观看| 婷婷色av中文字幕| 欧美日韩视频高清一区二区三区二| 午夜精品在线福利| 午夜精品国产一区二区电影 | 一本久久精品| 亚洲av不卡在线观看| videossex国产| 国产片特级美女逼逼视频| 色尼玛亚洲综合影院| 特级一级黄色大片| 久久热精品热| 免费黄色在线免费观看| 丝袜喷水一区| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 一本一本综合久久| 联通29元200g的流量卡| 日韩av不卡免费在线播放| or卡值多少钱| 直男gayav资源| 2022亚洲国产成人精品| 18禁裸乳无遮挡免费网站照片| 亚洲性久久影院| 亚洲av福利一区| 亚洲av不卡在线观看| 国产精品综合久久久久久久免费| 亚洲最大成人av| 久久久久久久大尺度免费视频| 亚洲av中文字字幕乱码综合| 极品教师在线视频| 久久久久国产网址| 亚洲av国产av综合av卡| 成人特级av手机在线观看| 人妻系列 视频| 国产老妇女一区| 色综合站精品国产| 美女高潮的动态| 成人午夜精彩视频在线观看| 边亲边吃奶的免费视频| 床上黄色一级片| 水蜜桃什么品种好| 欧美日本视频| 欧美日韩精品成人综合77777| 六月丁香七月| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 国精品久久久久久国模美| 免费黄网站久久成人精品| 国内精品美女久久久久久| 成人午夜高清在线视频| 熟妇人妻久久中文字幕3abv| 搡老乐熟女国产| 天堂网av新在线| 少妇被粗大猛烈的视频| 婷婷色av中文字幕| 国产三级在线视频| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 能在线免费看毛片的网站| 日韩国内少妇激情av| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 亚洲国产欧美在线一区| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看| 国产人妻一区二区三区在| 在线a可以看的网站| 嫩草影院新地址| 看黄色毛片网站| 爱豆传媒免费全集在线观看| 亚洲美女搞黄在线观看| 一区二区三区高清视频在线| 亚州av有码| 精品久久久久久久久亚洲| 色综合站精品国产| 精品一区二区三区视频在线| 日本一本二区三区精品| 大话2 男鬼变身卡| 午夜激情久久久久久久| 在现免费观看毛片| 夜夜爽夜夜爽视频| 身体一侧抽搐| 狂野欧美激情性xxxx在线观看| 国产精品伦人一区二区| 亚洲av二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 男人和女人高潮做爰伦理| 黄色一级大片看看| 女人十人毛片免费观看3o分钟| 亚洲国产日韩欧美精品在线观看| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 寂寞人妻少妇视频99o| 最近中文字幕高清免费大全6| 欧美高清性xxxxhd video| 久久久午夜欧美精品| 国产片特级美女逼逼视频| 九九在线视频观看精品| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 国产亚洲午夜精品一区二区久久 | av黄色大香蕉| 亚洲欧美精品专区久久| 高清欧美精品videossex| 国产伦一二天堂av在线观看| 精品午夜福利在线看| 嘟嘟电影网在线观看| 黄色日韩在线| 2018国产大陆天天弄谢| 日本黄色片子视频| 大陆偷拍与自拍| 男女边吃奶边做爰视频| 欧美极品一区二区三区四区| 国产av在哪里看| 亚洲人与动物交配视频| 日韩精品青青久久久久久| 亚洲国产色片| 大话2 男鬼变身卡| 亚洲国产精品成人久久小说| 国产永久视频网站| 国产成人aa在线观看| 成人毛片60女人毛片免费| 午夜福利视频1000在线观看| 国产免费福利视频在线观看| 97热精品久久久久久| 中国美白少妇内射xxxbb| 一级毛片电影观看| 91精品一卡2卡3卡4卡| 久久精品综合一区二区三区| 看黄色毛片网站| 一级毛片电影观看| 国产亚洲精品av在线| 亚洲精品国产成人久久av| 成人午夜精彩视频在线观看| 国产成人福利小说| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 午夜视频国产福利| 乱人视频在线观看| 少妇的逼水好多| 日韩av免费高清视频| 国产成人a区在线观看| 七月丁香在线播放| 观看免费一级毛片| 2021天堂中文幕一二区在线观| 青青草视频在线视频观看| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 免费看光身美女| 在线免费观看的www视频| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 国产 一区精品| 国产片特级美女逼逼视频| 免费看光身美女| 天堂√8在线中文| 成人亚洲精品av一区二区| 亚洲av国产av综合av卡| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 99久久精品国产国产毛片| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 插逼视频在线观看| 亚洲精品日本国产第一区| 欧美xxⅹ黑人| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久av不卡| 插逼视频在线观看| 精品一区二区三区视频在线| 男人舔奶头视频| 久久精品国产亚洲网站| 免费观看a级毛片全部| 久久草成人影院| 欧美bdsm另类| 久久久久久久久久久丰满| 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩一区二区视频免费看| 丰满乱子伦码专区| 伦精品一区二区三区| 69人妻影院| 色综合色国产| 午夜福利视频1000在线观看| 22中文网久久字幕| 麻豆乱淫一区二区| 久久国产乱子免费精品| 直男gayav资源| 99久久中文字幕三级久久日本| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 免费av观看视频| 一个人免费在线观看电影| 亚洲最大成人中文| 18禁在线播放成人免费| 国内精品一区二区在线观看| 一级毛片我不卡| 免费观看在线日韩| 三级毛片av免费| 自拍偷自拍亚洲精品老妇| 免费看日本二区| 免费播放大片免费观看视频在线观看| 国产综合懂色| 国产精品日韩av在线免费观看| 亚洲欧美成人精品一区二区| 两个人视频免费观看高清| 看免费成人av毛片| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 国产美女午夜福利| 久久99蜜桃精品久久| 久99久视频精品免费| 国产黄色免费在线视频| 成人亚洲精品av一区二区| 亚洲国产精品专区欧美| 免费人成在线观看视频色| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 亚洲高清免费不卡视频| 人妻夜夜爽99麻豆av| 国产中年淑女户外野战色| 久久99蜜桃精品久久| 中文字幕免费在线视频6| 99久久精品热视频| 国产淫语在线视频| 国产精品精品国产色婷婷| 人妻制服诱惑在线中文字幕| 日本一二三区视频观看| 亚洲av国产av综合av卡| 中文字幕免费在线视频6| 最近最新中文字幕免费大全7| 国产淫语在线视频| 国产综合精华液| 国产黄片美女视频| 亚洲精品日本国产第一区| 日日啪夜夜撸| 99热这里只有精品一区| 久久久久久久久久黄片| 成人午夜精彩视频在线观看| av在线播放精品| 熟女电影av网| 国产中年淑女户外野战色| 日韩中字成人| 亚洲人成网站高清观看| 亚洲av电影在线观看一区二区三区 | 老司机影院毛片| 久久久色成人| 国产亚洲5aaaaa淫片| 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 国产综合懂色| 亚洲欧洲日产国产| 天天一区二区日本电影三级| 午夜免费激情av| 91午夜精品亚洲一区二区三区| 国产精品伦人一区二区| 亚洲一级一片aⅴ在线观看| 欧美变态另类bdsm刘玥| 亚洲国产精品成人综合色| 国产午夜福利久久久久久| 在线免费观看不下载黄p国产| 深夜a级毛片| 日韩欧美国产在线观看| 国产亚洲午夜精品一区二区久久 | 黄片wwwwww| 在线观看人妻少妇| 最近视频中文字幕2019在线8| 国产精品.久久久| 亚洲四区av| 国产精品国产三级专区第一集| 亚洲av不卡在线观看| 久久久久久久久久黄片| 亚洲无线观看免费| 18禁裸乳无遮挡免费网站照片| 久久精品人妻少妇| 中文字幕制服av| 国产成年人精品一区二区| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 久久久亚洲精品成人影院| 亚洲av不卡在线观看| av又黄又爽大尺度在线免费看| 欧美日本视频| 日韩欧美精品免费久久| 国产极品天堂在线| 色尼玛亚洲综合影院| 男女边吃奶边做爰视频| 91狼人影院| 丰满少妇做爰视频| 午夜福利在线在线| 精品久久久久久久久久久久久| 一级毛片电影观看| 黄色日韩在线| 亚洲精品第二区| 婷婷六月久久综合丁香| 欧美变态另类bdsm刘玥| 六月丁香七月| 国产黄色免费在线视频| 尤物成人国产欧美一区二区三区| 男女边吃奶边做爰视频| 网址你懂的国产日韩在线| 午夜爱爱视频在线播放| 又大又黄又爽视频免费| 国产伦精品一区二区三区四那| 女人十人毛片免费观看3o分钟| 我的老师免费观看完整版| 99久国产av精品| 欧美精品国产亚洲| 一个人看视频在线观看www免费| 国产亚洲av嫩草精品影院| 免费高清在线观看视频在线观看| 午夜久久久久精精品| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 久久精品国产亚洲网站| 久久久久久久久大av| 中文字幕av在线有码专区| 亚洲高清免费不卡视频| 午夜福利在线在线| 国产大屁股一区二区在线视频| 99九九线精品视频在线观看视频| 亚洲国产高清在线一区二区三| 日本黄色片子视频| 亚洲自偷自拍三级| 人妻制服诱惑在线中文字幕| 简卡轻食公司| 婷婷六月久久综合丁香| 97超碰精品成人国产| 精品久久久精品久久久| 黄片无遮挡物在线观看| 午夜精品一区二区三区免费看| 国产黄色小视频在线观看| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 99热这里只有是精品在线观看| 亚洲一级一片aⅴ在线观看| 久久久久久久久久成人| 成年人午夜在线观看视频 | 啦啦啦啦在线视频资源| 欧美精品国产亚洲| 看十八女毛片水多多多| 麻豆乱淫一区二区| 爱豆传媒免费全集在线观看| 亚洲欧美日韩东京热| 熟女人妻精品中文字幕| 日本wwww免费看| 91精品一卡2卡3卡4卡| 高清欧美精品videossex| 亚洲精品日韩av片在线观看| 成年女人在线观看亚洲视频 | 久久精品国产鲁丝片午夜精品| 我要看日韩黄色一级片| 午夜福利在线观看免费完整高清在| 91精品国产九色| 床上黄色一级片| av天堂中文字幕网| 亚洲一区高清亚洲精品| 亚洲熟妇中文字幕五十中出| 人妻制服诱惑在线中文字幕| 狂野欧美白嫩少妇大欣赏| 高清日韩中文字幕在线| 精品少妇黑人巨大在线播放| 午夜爱爱视频在线播放| 亚洲伊人久久精品综合| 国产伦理片在线播放av一区| 五月天丁香电影| 国产精品av视频在线免费观看| 亚洲国产日韩欧美精品在线观看| 亚洲av免费高清在线观看| 久久精品久久久久久噜噜老黄| 午夜免费男女啪啪视频观看| 免费观看的影片在线观看| 久久99蜜桃精品久久| 青春草视频在线免费观看| 亚洲婷婷狠狠爱综合网| 欧美日韩在线观看h| 欧美潮喷喷水| 性色avwww在线观看| av国产免费在线观看| 午夜视频国产福利| 国产亚洲av嫩草精品影院| 久久久久精品久久久久真实原创| kizo精华| 久久久久网色| 搡女人真爽免费视频火全软件| 91精品一卡2卡3卡4卡| 日韩亚洲欧美综合| 亚洲怡红院男人天堂| 国产精品99久久久久久久久| 久久久久精品性色| 国产精品一及| 黄色一级大片看看| 国产精品一二三区在线看| 亚洲内射少妇av| 在线天堂最新版资源| 亚洲精品国产av蜜桃|