• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation*

    2009-05-12 03:32:50HUChunping胡春平andYANXuefeng顏學峰

    HU Chunping (胡春平) and YAN Xuefeng (顏學峰)

    ?

    An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation*

    HU Chunping (胡春平) and YAN Xuefeng (顏學峰)**

    Automation Institute, East China University of Science and Technology, Shanghai 200237, China

    A new version of differential evolution (DE) algorithm, in which immune concepts and methods are applied to determine the parameter setting, named immune self-adaptive differential evolution (ISDE), is proposed to improve the performance of the DE algorithm. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. The performance of the proposed method is studied with the use of nine benchmark problems and compared with original DE algorithm and other well-known self-adaptive DE algorithms. The experiments conducted show that the ISDE clearly outperforms the other DE algorithms in all benchmark functions. Furthermore, ISDE is applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas, and satisfactory results are obtained.

    differential evolution, immune system, evolutionary computation, parameter estimation

    1 Introduction

    Differential evolution (DE) [1] is a new generation evolutionary algorithm (EA) and has been successfully applied to solve a wide range of optimization problems. Differential evolution is stochastic, population- based, and direct search algorithm for globally optimizing functions with real valued parameters. In the first international IEEE Competition on evolutionary optimization, DE proved to be one of the fastest EAs. Storn and Price [1] have compared DE with adaptive simulated annealing [2], the annealed Nelder and Mead approach [3], the breeder genetic algorithm [4], the EA with soft genetic operators [5], and the method of stochastic differential equations [6]. In most instances, DE outperformed all of the above minimizations approaches. Vesterstrom and Thomsen [7] applied 34 widely used benchmark problems to evaluate the performance of DE, particle swarm optimization (PSO) [8], and EA. Their study shows that DE generally outperforms the other algorithms. Krink. [9] introduced three search approaches [genetic algorithm (GA) [10], PSO, and DE] to develop bank rating systems, respectively, and turned out that DE is clearly and consistently superior compared with GA and PSO both in respect to precision and reliability.

    In recent years, researchers have developed various strategies for adjusting control parameters dynamically. Abbass [15] proposed a self-adaptive Pareto DE (SPDE). In SPDE, the mutation rate is sampled for each individual from a Gaussian distribution,(0, 1). The crossover rate is first initialized for each individual from a uniform distribution,(0, 1). Then, CR is adapted as

    where

    In self-adaptation parameter control, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters [19]. In other words, the concept of coevolution can be used to adapt the control parameters. Coevolution method is an effective approach to decompose complex structure and achieve better performance. Several applications of coevolution method, which have been proven to be useful, were described in the literatures [20-22]. In this article, the immune concepts and methods are applied to determine the parameter setting of DE. Further, the proposed method, named immune self-adaptive differential evolution (ISDE), is compared with the versions of DE proposed by Price and Storn [23], the SPDE proposed by Abbass [15], and the self-adaptive DE (SDE) proposed by Omran[16].

    For illustration, ISDE was applied to develop the kinetic model for homogeneous mercury (Hg) oxidation in flue gas. Homogeneous mercury oxidation in flue gas is a highly nonlinear reaction with reference to optimal operating conditions with many equality and inequality constraints. The kinetic model involves five reactions. Two of these reactions are reversible and three are irreversible. The preexponential factor and activation energy values in the rate constant term for each reaction need to be determined. Then, ISDE was used to determine the kinetic parameters for homogeneous mercury oxidation in flue gas with the data obtained in a laboratory scale apparatus, reported by Agarwal. [24, 25], and the kinetic model with good precision for homogeneous mercury oxidation in flue gas was developed.

    2 Differential evolution algorithm

    The procedure of executing DE can be described in the following:

    (7) Repeat steps 2-6 as long as the number of generations is smaller than the allowable maximum numbermand the best individual is not obtained.

    The mutation strategy described above is known as DE/rand/1, meaning that the vector to be perturbed is randomly chosen, and that the perturbation consists of one weighted difference vector. DE/rand/1 is the most successful and the most widely used strategy [14].Other useful strategies are:

    “DE/rand-to-best/1”:

    “DE/best/2”:

    “DE/rand/2”:

    3 Immune Self-adaptive Differential Evolution

    In self-adaptation parameter control, the idea of an evolutionary search can be used to implement the self-adaptation of search parameters. The parameters to be adapted are coded into the chromosomes that undergo mutation and recombination. Better values for these encoded parameters are supposed to result in better individuals that in turn are more likely to survive and produce offspring and hence propagate better parameter values [19]. In other words, self-adaptation is a strategy in which the idea of an evolutionary search was used to choose the optimal parameters.

    Immune system, a highly evolved biological system with learning, memory, and pattern recognition capabilities [26], has been successfully integrated into many other evolution algorithms [27-29]. In our work, the immune concepts and methods are applied to determine the parameter setting of DE. To be exact, the aim of leading immune concepts and methods into DE is theoretically to use the previous state information of search for seeking the optimal parameters,and CR. During the actual operation, ISDE seeks the optimal parameters arising from the evolutionary process, which enable ISDE to alter the algorithm for different optimization problems and improve the performance of ISDE by the control parameters’ self-adaptation. In ISDE, the first initial antibodies are randomly generated within the feasible range. The two parameters of each individual are initialized from a normal distribution within the feasible range. The affinity values of the antibodies are calculated. Then, depending on the affinity values, the parameters are replaced by antibody with a certain probability defined previously. In each generation, a percentage of antibodies in the antibody population are replaced by created new antibodies. Thus, the coevolution method is established. Differential evolution is used to perform evolution search in spaces of solutions, and immune system is used to perform evolution search in spaces of control parameters. The solutions and control parameters evolve interactively and selfadaptively, and both the satisfactory solutions and suitable control parameters can be obtained simultaneously.

    The procedure of executing ISDE can be described in the following:

    (1) Initialization operation

    (3) Mutation operation

    (4) Crossover operation

    (5) Evaluation operation

    (6) Create new antibodies

    (7) Update antibodies

    (8) Generate the parameters for next generation

    whereis the parameter that controls the probability between different antibodies.

    (10) Repeat steps 2-9 as long as the number of generations is smaller than the allowable maximum numbermand the best individual is not obtained.

    4 Benchmark function

    Nine benchmark functions were used in our experimental studies. These benchmark functions were divided into three classes: functions with single optima, many local minima, and a few local minima. The benchmark functions are given in Table 1.stands for the dimension of the function,0denotes their ranges, andminis a function value of the global optimum. A more detailed description of each function is given in Yao. [30], Krink. [31], and Salman[32].

    5 Experimental results

    Maximal number of evaluations: 50000;

    The results reported in this section are average results of 30 independent runs.

    Table 1 Benchmark function

    5.1 No-noisy benchmark functions

    Table 3 summarizes the results obtained by applying the different approaches to the multimodal benchmark functions. The results show that the ISDE significantly outperformed (or at least equal to) the other methods in all the multimodal functions.

    From above experiments, it can be turned out that ISDE is clearly superior compared with the original DE strategies, SPDE, and SDE in all benchmark functions.

    5.2 Noisy benchmark functions

    In this subsection, the effect of noise on the performance of ISDE is investigated. The noisy versions of the benchmark functions are defined as:

    Table 4 and Table 5 summarize the results obtained for the noisy problems for the unimodal and multimodal functions, respectively. Table 4 and 5 show that the ISDE was less prone to noise than other DE strategies for all benchmark functions. The ISDE retained its position as the best performer when applied to all benchmark functions even in the presence of noise. The only exception is the noisy Rastrigin’s function where SDE outperformed the ISDE. However, even for the noisy Rastrigin’s function where ISDE’s average is worse than SDE, it is not significantly worse. In addition, the improvement is even more significant for the noisy Ackley’s function, where all strategies were trapped in a local optimum. Hence, compared with the other tested strategies, the ISDE seems to be less badly affected by noise. This is a significant improvement over the conventional DE, which is not a good approach to achieve results with high accuracy for noisy functions [31].

    Table 2 Mean and standard deviation (±SD) of the unimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 3 Mean and standard deviation (±SD) of the multimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 4 Mean and standard deviation (±SD) of the noisy unimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    Table 5 Mean and standard deviation (±SD) of the noisy multimodal function optimization results (The data about DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2, DE/best/2, SPDE, and SDE were reported by Salman et al. [32])

    5.3 Effect of α, β, and

    6 Application

    Mercury emissions from coal-fired power plants are highly dependent upon mercury speciation [33]. Mercury in the flue gas is most commonly classified in three forms: elemental mercury (Hg0), oxidized mercury (Hg2+), and particulate bound mercury (HgP). The particulate bound mercury is usually trapped by ash collection devices within power plants, such as electrostatic precipitators, mechanical hoppers, or bag houses. Elemental mercury is relatively inert and difficult to capture because of its nonreactivity. It is also volatile at high temperatures and insoluble in water. In contrast, oxidized mercury is very water soluble and has an affinity for adsorbing onto particulate matter such as fly ash or on metal surfaces in the duct. As a result of these physical and chemical properties of Hg0and Hg2+, the removal of mercury is enhanced when elemental Hg is converted to its oxidized form [34].

    In order to better understand the reaction mechanism that takes place in the gas phase, a model needs to be developed where the percentage of mercury oxidized can be predicted based on the concentrations of these flue gas components. The reaction mechanism, proposed by Agarwal and Stenger [34], is a five-reactionsystem, where two reactions are reversible and three reactions are irreversible. These reactions are listed below:

    where the term (s, g) denotes that the species could be in solid (s), gas (g) or both phases.

    The reaction rate equations can be written as follows:

    Table 6 Influence of α on the performance of ISDE

    Table 7 Influence of β on the performance of ISDE

    Table 8 Influence of??on the performance of ISDE

    Table 9 Optimal parameters and objective function values corresponding to reported data [34] and ISDE

    7 Conclusions

    This article presents an efficient self-adaptive DE algorithm for global optimization. In the proposed method, the immune concepts and methods are applied to determine the parameter setting, which utilizes the previous state information of search for seeking the optimal parameters,and CR. In the benchmark tests, both noisy and nonoisy functions, the results show that the performance of ISDE is outstanding in comparison with the original DE strategies, SPDE and SDE tested. Among the tested strategies, the ISDE can rightfully be regarded as an excellent first choice when faced with a new optimization problem to solve. Thus, the algorithm was subsequently used to estimate the kinetic parameters for homogeneous mercury oxidation in flue gas. The results marked a noticeable improvement over previously reported solutions.

    1 Storn, R., Price, K., “Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces”, Technical Report TR-95-012, International Computer Science Institute, Berkeley, CA, USA (1995).

    2 Ingber, L., “Simulated annealing: Practicetheory”,..., 18, 29-57 (1993).

    3 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in C, Cambridge University Press, UK (1992).

    4 Muehlenbein, H., Schlierkamp, V., “Predictive models for the breeder genetic algorithm (I) Continuous parameter optimizations”,.., 1, 25-49 (1993).

    5 Voigt, H.M., “Soft genetic operators in evolutionary algorithms”,, 899, 123-141 (1995).

    6 Aluffi-Pentini, F., Parisi, V., Zirilli, F., “Global optimization and stochastic differential equations”,..., 47, 1–16 (1985).

    7 Vesterstrom, J., Thomsen, R., “A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems”, In: Proceedings of the Sixth Congress on Evolutionary Computation, IEEE Press, USA, 332-339 (2004).

    8 Eberhart, R., Kennedy, J., “A new optimizer using particle swarm theory”, In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, IEEE Press, Nagoya, Japan, 39-43 (1995).

    9 Krink, T., Paterlini, S., Resti, A., “Using differential evolution to improve the accuracy of bank rating systems”,..., 52, 68-87 (2007).

    10 Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor (1975).

    11 Brest, J., Bo?kovi?, B., Greiner, S., ?umer, V., Mau?ec., M., “Performance comparison of self-adaptive and adaptive differential evolution algorithms”,., 11, 617-629 (2007).

    12 Liu, J., Lampinen., J., “A fuzzy adaptive differential revolution algorithm”, In: Proceedings of the IEEE International Region 10 Conference on Computers, Communications, Control and Power Engineering, IEEE Press, Beijing, China, 606-611(2002).

    13 Storn, R., “On the usage of differential evolution for function optimization”, In: Biennial Conference of North American Fuzzy Information Processing Society, IEEE Press, Berkeley, USA, 519–523 (1996).

    14 Babu, B., Jehan, M., “Differential evolution for multi-objective optimization”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Canberra, Australia, 2696-2703 (2003).

    15 Abbass., H., “The self-adaptive pareto differential evolution algorithm”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Hawaii, USA, 831-836 (2002).

    16 Omran, M., Salman, A., Engelbrecht, A., “Self-adaptive differential evolution”, In: Proceedings of the International Conference on Computational Intelligence and Security, IEEE Press, Xi’an, China, 192-199 (2005).

    17 Yuan, X.H., Zhang, Y., Wang, L., Yuan, Y.B., “An enhanced differential evolution algorithm for daily optimal hydro generation scheduling”,..., 55, 2458-2468 (2008).

    18 Nobakhti, A., Wang, H., “A simple self-adaptive differential evolution algorithm with application on the ALSTOM gasifier”,.., 8, 350–370 (2008).

    19 Eiben, A., Hinterding, R., Michalewicz, Z., “Parameter control in evolutionary algorithms”,..., 3, 124-141 (1999).

    20 Carlos, A.C.C., “Use of a self-adaptive penalty approach for engineering optimization problems”,.., 41, 113-127 (2000).

    21 He, Q., Wang, L., “An effective co-evolutionary particle swarm optimization for constrained engineering design problems”,...., 20, 89-99 (2007).

    22 Hu, F.Z., Wang, L., He, Q., “An effective co-evolutionary differential evolution for constrained optimization”,..., 186, 340-356 (2007).

    23 Storn, R., Price, K., “Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces”,.., 11, 341-359 (1997).

    24 Agarwal, H., Stenger, H.G., Wu, S., Fan, Z., “Effects of H2O, SO2and NO on homogeneous Hg oxidation by Cl2”,.., 20, 1068-1075 (2006).

    25 Agarwal, H., Romero, C.E., Stenger, H.G., “Comparing and interpreting laboratory results of Hg oxidation by a chlorine species”,.., 88, 723-730 (2007).

    26 Farmer, J.D., Packard, N.H., Perelson, A.S., “The immune system, adaptation, and machine learning”,., 2, 187-204 (1986).

    27 Wu, X.L., Lu, J.G., Sun, Y.X., “An improved differential evolution for optimization of chemical process”,...., 16, 228-234 (2008).

    28 Jiao, L.C., Wang, L., “A novel genetic algorithm based on immunity”,..., 30, 552-561 (2000).

    29 Zeng, C.W., Gu, T.L., “A novel immunity-growth genetic algorithm for traveling salesman problem”, In: Proceedings of IEEE Conference on Natural Computation, IEEE Press, Haikou, China, 394-398 (2007).

    30 Xin, Y., Liu, Y., Lin, G.M., “Evolutionary programming made faster”,..., 3, 82-102 (1999).

    31 Krink, T., Filipi?, B., Fogel, B., “Noisy optimization problems—A particular challenge for differential evolution?”, In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 332-339 (2004).

    32 Salman, A., Engelbrecht, A., Omran, M., “Empirical analysis of self-adaptive differential evolution”,...., 83, 785–804 (2007).

    33 Niksa, S., Helble, J.J., Fujiwara, N., “Kinetic modeling of homogeneous mercury oxidation: The importance of NO and H2O in predicting oxidation in coal-derived systems”,..., 35, 3701-3706 (2001).

    34 Agarwal, H., Stenger, H.G., “Development of a predictive kinetic model for homogeneous Hg oxidation data”,..., 45, 109-125 (2007).

    2008-07-28,

    2008-12-24.

    the National Natural Science Foundation of China (20506003, 20776042) and the National High-Tech Research and Development Program of China (2007AA04Z164).

    ** To whom correspondence should be addressed. E-mail: yan_xuefeng@hotmail.com

    午夜久久久久精精品| 一区二区三区国产精品乱码| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av不卡久久| 亚洲精品美女久久久久99蜜臀| 国产伦一二天堂av在线观看| 亚洲欧洲精品一区二区精品久久久| 国产成人aa在线观看| 国产精品日韩av在线免费观看| 亚洲av五月六月丁香网| 日韩欧美国产在线观看| 18美女黄网站色大片免费观看| 美女黄网站色视频| 少妇裸体淫交视频免费看高清 | 久久性视频一级片| 精品熟女少妇八av免费久了| 在线观看日韩欧美| 精品欧美一区二区三区在线| 岛国在线观看网站| 97人妻精品一区二区三区麻豆| 90打野战视频偷拍视频| 97超级碰碰碰精品色视频在线观看| 丁香六月欧美| 神马国产精品三级电影在线观看 | 亚洲自偷自拍图片 自拍| 免费在线观看影片大全网站| 99久久99久久久精品蜜桃| 久9热在线精品视频| 男女视频在线观看网站免费 | 老司机午夜十八禁免费视频| 免费看十八禁软件| 精品免费久久久久久久清纯| 久久精品影院6| 久久久精品欧美日韩精品| 久久久久九九精品影院| 亚洲天堂国产精品一区在线| 在线观看免费视频日本深夜| 久久天堂一区二区三区四区| 亚洲五月婷婷丁香| 免费在线观看成人毛片| 色av中文字幕| 中文字幕精品亚洲无线码一区| 亚洲av第一区精品v没综合| 18禁国产床啪视频网站| 国产精品久久久人人做人人爽| 女人高潮潮喷娇喘18禁视频| 97人妻精品一区二区三区麻豆| 国产三级黄色录像| 亚洲人与动物交配视频| 男男h啪啪无遮挡| 三级国产精品欧美在线观看 | 丰满的人妻完整版| 国产成人系列免费观看| 亚洲精品国产一区二区精华液| x7x7x7水蜜桃| 亚洲人与动物交配视频| 1024手机看黄色片| 99riav亚洲国产免费| a级毛片在线看网站| 久久久久国内视频| 久久精品国产亚洲av高清一级| 俄罗斯特黄特色一大片| 亚洲九九香蕉| a级毛片a级免费在线| 欧美日韩亚洲综合一区二区三区_| 51午夜福利影视在线观看| 精品久久久久久久末码| 久久天躁狠狠躁夜夜2o2o| av超薄肉色丝袜交足视频| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | avwww免费| 精品免费久久久久久久清纯| 日本在线视频免费播放| 免费在线观看影片大全网站| 久久人妻福利社区极品人妻图片| 国产视频一区二区在线看| 国内揄拍国产精品人妻在线| 亚洲色图 男人天堂 中文字幕| 日韩大尺度精品在线看网址| 亚洲真实伦在线观看| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 久久香蕉精品热| 免费在线观看完整版高清| 十八禁人妻一区二区| 午夜久久久久精精品| 日本黄色视频三级网站网址| 深夜精品福利| 在线看三级毛片| 老司机深夜福利视频在线观看| 丁香欧美五月| 午夜福利视频1000在线观看| 淫妇啪啪啪对白视频| 两个人的视频大全免费| 免费看美女性在线毛片视频| 高清在线国产一区| 亚洲电影在线观看av| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 午夜激情av网站| 国产91精品成人一区二区三区| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久二区二区91| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 麻豆国产97在线/欧美 | 黄色 视频免费看| 亚洲精品国产精品久久久不卡| 三级毛片av免费| 韩国av一区二区三区四区| 成人三级黄色视频| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 国产久久久一区二区三区| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 两个人免费观看高清视频| 日本一二三区视频观看| 真人做人爱边吃奶动态| 一区福利在线观看| 久99久视频精品免费| 黑人操中国人逼视频| 欧美性长视频在线观看| 久久久久久久久久黄片| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 国产又色又爽无遮挡免费看| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| www日本黄色视频网| 最近最新免费中文字幕在线| 看黄色毛片网站| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 亚洲国产日韩欧美精品在线观看 | 此物有八面人人有两片| 久久天躁狠狠躁夜夜2o2o| 怎么达到女性高潮| 美女午夜性视频免费| 亚洲精品久久国产高清桃花| 久久久久免费精品人妻一区二区| 巨乳人妻的诱惑在线观看| 十八禁人妻一区二区| 麻豆一二三区av精品| 天天躁狠狠躁夜夜躁狠狠躁| 国模一区二区三区四区视频 | 国产高清视频在线播放一区| 国产成人精品久久二区二区91| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 国内毛片毛片毛片毛片毛片| 丰满人妻熟妇乱又伦精品不卡| 国产一区二区三区视频了| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 国产乱人伦免费视频| 免费高清视频大片| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 99国产综合亚洲精品| 久久伊人香网站| 免费在线观看影片大全网站| 日本 欧美在线| 看免费av毛片| 国产又色又爽无遮挡免费看| 亚洲人与动物交配视频| 国产精品久久久久久久电影 | 十八禁网站免费在线| 国产日本99.免费观看| 成人国产综合亚洲| 视频区欧美日本亚洲| 国产v大片淫在线免费观看| 亚洲熟女毛片儿| a级毛片a级免费在线| 欧洲精品卡2卡3卡4卡5卡区| 神马国产精品三级电影在线观看 | 一进一出抽搐gif免费好疼| 香蕉丝袜av| 欧美中文综合在线视频| 男人舔奶头视频| 国产精品久久久久久人妻精品电影| 91老司机精品| 国产主播在线观看一区二区| xxxwww97欧美| 亚洲成人久久性| 一个人免费在线观看电影 | 亚洲 欧美 日韩 在线 免费| videosex国产| 美女 人体艺术 gogo| 久久热在线av| 欧美日韩黄片免| 国产精品久久久久久精品电影| 亚洲无线在线观看| 久久性视频一级片| 国产av一区在线观看免费| 亚洲va日本ⅴa欧美va伊人久久| 男人舔奶头视频| 国产一区二区激情短视频| 桃红色精品国产亚洲av| 黑人欧美特级aaaaaa片| 国产视频一区二区在线看| 亚洲美女视频黄频| 国产高清有码在线观看视频 | 91九色精品人成在线观看| 成人av一区二区三区在线看| 两个人免费观看高清视频| 亚洲一区二区三区色噜噜| 十八禁网站免费在线| 少妇的丰满在线观看| 亚洲人成网站在线播放欧美日韩| 一夜夜www| 99热这里只有是精品50| 国产一区二区在线观看日韩 | 99在线人妻在线中文字幕| 中出人妻视频一区二区| 日韩免费av在线播放| 黄频高清免费视频| 免费观看精品视频网站| 国产精品久久久人人做人人爽| 非洲黑人性xxxx精品又粗又长| 国产精品98久久久久久宅男小说| 国内毛片毛片毛片毛片毛片| 一级毛片高清免费大全| 亚洲精品色激情综合| 亚洲第一欧美日韩一区二区三区| 好男人电影高清在线观看| 老鸭窝网址在线观看| 精品久久久久久久人妻蜜臀av| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 久久久久久人人人人人| 毛片女人毛片| 一二三四在线观看免费中文在| 九九热线精品视视频播放| 制服人妻中文乱码| 国产三级在线视频| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| 男女视频在线观看网站免费 | 亚洲精华国产精华精| 91在线观看av| 黄色视频不卡| 亚洲欧美日韩高清在线视频| 在线永久观看黄色视频| 精品日产1卡2卡| 97碰自拍视频| av福利片在线| 身体一侧抽搐| 一本久久中文字幕| 亚洲欧美精品综合一区二区三区| 男女之事视频高清在线观看| 在线观看舔阴道视频| 久久久久久久久久黄片| 级片在线观看| 在线观看一区二区三区| 最新在线观看一区二区三区| 亚洲 国产 在线| 亚洲五月婷婷丁香| 小说图片视频综合网站| 国产精品精品国产色婷婷| 精品久久久久久久久久免费视频| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| 精华霜和精华液先用哪个| 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 亚洲最大成人中文| 免费看美女性在线毛片视频| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 男人舔奶头视频| 久久午夜亚洲精品久久| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 国产成人精品久久二区二区免费| 国产三级黄色录像| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 国产在线精品亚洲第一网站| 久久天堂一区二区三区四区| 在线播放国产精品三级| 久久亚洲精品不卡| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 在线观看日韩欧美| 99久久久亚洲精品蜜臀av| 丝袜人妻中文字幕| 国产精品1区2区在线观看.| 欧美日韩亚洲综合一区二区三区_| 99精品在免费线老司机午夜| 亚洲片人在线观看| 成人国语在线视频| 最好的美女福利视频网| bbb黄色大片| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 女同久久另类99精品国产91| 亚洲精华国产精华精| 在线十欧美十亚洲十日本专区| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 国产精品,欧美在线| 欧美中文日本在线观看视频| 国产野战对白在线观看| 无人区码免费观看不卡| 999久久久国产精品视频| 午夜精品在线福利| 身体一侧抽搐| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 亚洲精华国产精华精| 成人高潮视频无遮挡免费网站| or卡值多少钱| 亚洲av片天天在线观看| 天天添夜夜摸| 欧美日韩国产亚洲二区| 嫩草影院精品99| 啦啦啦韩国在线观看视频| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 色哟哟哟哟哟哟| 午夜福利视频1000在线观看| 妹子高潮喷水视频| 成年人黄色毛片网站| 国产精品1区2区在线观看.| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 亚洲av熟女| 久久精品亚洲精品国产色婷小说| 亚洲九九香蕉| 超碰成人久久| 99国产精品一区二区蜜桃av| 午夜激情av网站| cao死你这个sao货| 婷婷精品国产亚洲av| av视频在线观看入口| 男男h啪啪无遮挡| 国产亚洲欧美在线一区二区| 真人做人爱边吃奶动态| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 日本免费a在线| 一本综合久久免费| 香蕉丝袜av| 91在线观看av| 国产黄色小视频在线观看| 久久精品国产综合久久久| 色综合站精品国产| 国产1区2区3区精品| 国产高清视频在线观看网站| 人妻丰满熟妇av一区二区三区| 美女黄网站色视频| 人妻丰满熟妇av一区二区三区| 天堂动漫精品| 欧美最黄视频在线播放免费| 日韩三级视频一区二区三区| 99国产精品99久久久久| 露出奶头的视频| 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 久久伊人香网站| 在线视频色国产色| 青草久久国产| 日日爽夜夜爽网站| av在线播放免费不卡| 国产视频内射| 亚洲 国产 在线| 真人一进一出gif抽搐免费| 国产成+人综合+亚洲专区| 免费av毛片视频| xxxwww97欧美| 精品国产超薄肉色丝袜足j| 色综合站精品国产| √禁漫天堂资源中文www| 亚洲乱码一区二区免费版| 久久久久久亚洲精品国产蜜桃av| 成人三级黄色视频| 狂野欧美激情性xxxx| 国产三级在线视频| 国产日本99.免费观看| 日韩欧美国产一区二区入口| 中出人妻视频一区二区| 午夜福利在线在线| 97超级碰碰碰精品色视频在线观看| 午夜影院日韩av| 免费看日本二区| 亚洲美女黄片视频| 成年女人毛片免费观看观看9| 久久国产乱子伦精品免费另类| 久久久久性生活片| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月| 国产精品 欧美亚洲| 国产精品一及| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| 国产激情偷乱视频一区二区| 亚洲av电影在线进入| 看黄色毛片网站| 欧美日韩亚洲综合一区二区三区_| 不卡av一区二区三区| 亚洲七黄色美女视频| 超碰成人久久| 亚洲国产欧美一区二区综合| 又紧又爽又黄一区二区| 一个人观看的视频www高清免费观看 | 精品国产乱子伦一区二区三区| 免费高清视频大片| 久久精品国产综合久久久| 男女之事视频高清在线观看| 在线观看66精品国产| 高清毛片免费观看视频网站| 色哟哟哟哟哟哟| 99久久国产精品久久久| 午夜福利18| 亚洲av电影不卡..在线观看| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 欧美乱码精品一区二区三区| 国产精品久久久久久人妻精品电影| 小说图片视频综合网站| 一级作爱视频免费观看| 村上凉子中文字幕在线| www.精华液| 丰满人妻一区二区三区视频av | 午夜精品久久久久久毛片777| 亚洲专区中文字幕在线| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 欧美一级a爱片免费观看看 | 变态另类成人亚洲欧美熟女| 亚洲一卡2卡3卡4卡5卡精品中文| 神马国产精品三级电影在线观看 | 日韩欧美三级三区| 亚洲中文日韩欧美视频| av视频在线观看入口| 女同久久另类99精品国产91| 操出白浆在线播放| 国产三级在线视频| 国产精品永久免费网站| 亚洲熟妇中文字幕五十中出| 女人爽到高潮嗷嗷叫在线视频| а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女| 欧美日韩福利视频一区二区| 午夜福利18| 午夜成年电影在线免费观看| АⅤ资源中文在线天堂| 国产免费男女视频| 欧美成人一区二区免费高清观看 | 99在线人妻在线中文字幕| 9191精品国产免费久久| 69av精品久久久久久| 国产精品亚洲一级av第二区| 亚洲人与动物交配视频| 午夜福利欧美成人| 男女那种视频在线观看| 最近视频中文字幕2019在线8| 亚洲一区中文字幕在线| 成人手机av| 成人国产一区最新在线观看| 欧美一级毛片孕妇| 亚洲精品色激情综合| 亚洲国产欧美网| 日韩av在线大香蕉| 妹子高潮喷水视频| 欧美丝袜亚洲另类 | 欧美成人一区二区免费高清观看 | 淫秽高清视频在线观看| 国内精品一区二区在线观看| 两性夫妻黄色片| 国产av在哪里看| 校园春色视频在线观看| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| 久久久久国内视频| 国产精品影院久久| 国产精品永久免费网站| 欧美日韩中文字幕国产精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产伦在线观看视频一区| 久久精品91无色码中文字幕| 91字幕亚洲| 欧美成人免费av一区二区三区| 亚洲av美国av| 欧美日本视频| 日韩高清综合在线| 精品人妻1区二区| 亚洲av电影不卡..在线观看| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 国产精品久久视频播放| 18禁观看日本| 欧美极品一区二区三区四区| 亚洲熟妇熟女久久| 国产精品乱码一区二三区的特点| 午夜精品在线福利| 国产精品久久久av美女十八| 夜夜躁狠狠躁天天躁| 制服丝袜大香蕉在线| 小说图片视频综合网站| 亚洲欧美激情综合另类| 亚洲激情在线av| 成人精品一区二区免费| 一级片免费观看大全| 少妇粗大呻吟视频| 校园春色视频在线观看| 国产三级黄色录像| 欧美精品亚洲一区二区| 在线观看日韩欧美| 亚洲片人在线观看| 99国产精品99久久久久| 中亚洲国语对白在线视频| 久久精品人妻少妇| 国产精品永久免费网站| or卡值多少钱| 国产视频一区二区在线看| 日本撒尿小便嘘嘘汇集6| 国产欧美日韩一区二区三| 国产亚洲精品综合一区在线观看 | 国产高清视频在线播放一区| 熟女少妇亚洲综合色aaa.| 19禁男女啪啪无遮挡网站| 成人国产综合亚洲| 国产精品美女特级片免费视频播放器 | 一进一出好大好爽视频| netflix在线观看网站| 又大又爽又粗| 亚洲自拍偷在线| 久久热在线av| 一夜夜www| 黄色 视频免费看| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| 欧美激情久久久久久爽电影| 国产成人aa在线观看| 男女做爰动态图高潮gif福利片| 看黄色毛片网站| 久久久久国内视频| 亚洲美女黄片视频| 久久久精品大字幕| а√天堂www在线а√下载| 动漫黄色视频在线观看| 99久久综合精品五月天人人| 麻豆国产97在线/欧美 | 性色av乱码一区二区三区2| 三级国产精品欧美在线观看 | 国产黄片美女视频| 很黄的视频免费| 免费av毛片视频| 国产伦一二天堂av在线观看| 真人一进一出gif抽搐免费| 一a级毛片在线观看| 亚洲精品av麻豆狂野| 中亚洲国语对白在线视频| av中文乱码字幕在线| 久久午夜综合久久蜜桃| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 成人三级做爰电影| 视频区欧美日本亚洲| 一边摸一边做爽爽视频免费| 久久精品国产99精品国产亚洲性色| 天堂√8在线中文| 国产精品一区二区三区四区免费观看 | 变态另类丝袜制服| 黄色成人免费大全| 欧美色欧美亚洲另类二区| 亚洲精品色激情综合| 欧美激情久久久久久爽电影| 美女 人体艺术 gogo| 亚洲,欧美精品.| 757午夜福利合集在线观看| 国产麻豆成人av免费视频| 91麻豆精品激情在线观看国产| 亚洲自偷自拍图片 自拍| av福利片在线| 国产欧美日韩一区二区三| 老司机深夜福利视频在线观看| 国产真实乱freesex| 亚洲美女视频黄频| 高潮久久久久久久久久久不卡| a级毛片a级免费在线| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| 不卡一级毛片| 成年免费大片在线观看| 久久精品aⅴ一区二区三区四区| 欧美大码av| 一二三四社区在线视频社区8| 脱女人内裤的视频| 亚洲国产欧美网| 精品国产乱码久久久久久男人| 欧美精品亚洲一区二区| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 狂野欧美白嫩少妇大欣赏| 美女免费视频网站| 一区二区三区国产精品乱码| 成人手机av| 婷婷六月久久综合丁香|