• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low Viscosity?。粒酰簦铮恚幔簦椋恪。裕颍幔睿螅恚椋螅螅椋铮睢。疲欤酰椋洌蟆。鳎椋簦琛。牛睿瑁幔睿悖澹洹。疲颍椋悖簦椋铮睢。模酰颍幔猓椋欤椋簦?/h1>
    2009-03-11 06:49:50KenjiYatsunamiSamuelH.TersigniTANGHong-zhiLeeD.SaathoffChristopherS.Cleveland2MarkJones
    潤滑油 2009年1期
    關(guān)鍵詞:收稿標(biāo)識碼分類號

    Kenji Yatsunami?。樱幔恚酰澹臁。龋裕澹颍螅椋纾睿椤。裕粒危恰。龋铮睿纾瑁椤。蹋澹濉。模樱幔幔簦瑁铮妫妗。茫瑁颍椋螅簦铮穑瑁澹颉。樱茫欤澹觯澹欤幔睿洌病。停幔颍搿。剩铮睿澹?/p>

    Abstract:This study focused on the development of a new low viscosity automatic transmission fluid (ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions. Recent high fuel prices encourage increased efficiency in the driveline, including the transmission. Reduction in fluid viscosity and wider use of slip control in torque converter clutches are two ways to practically improve fuel efficiency. Increased torque and more shifting is seen with a variety of new transmission hardware platforms, such as wet starting clutches, dual clutches and seven- or eight-speed ATs.This suggests the need for enhanced levels of friction durability from the ATF.The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear, friction durability and torque capacity requirements at low viscosity in a cost-effective manner.

    This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style.The new chemistry employs a low viscosity for increased fuel economy, while easily doubling the friction durability of current conventional ATFs and offering higher torque and better EP.

    Key words:six-speed ATF; low viscosity; friction durability

    中圖分類號:TE626.38 文獻(xiàn)標(biāo)識碼:A

    0 Introduction

    Automobile manufacturers obtain some corporate average vehicle fuel economy (CAFE) benefits by employing lower viscosity ATFs. Previous generations of ATFs had a 100 ℃ kinematic viscosity (Kv100 ℃) in the range of 7.0 to 8.0 cSt; the new generation of ATFs has a fresh oil Kv100 ℃ between 5.4 and 6.4 cSt[1]. Accordingly, low temperature (-40 ℃) and start-up viscosities (0 to 25 ℃) are also lower with the new ATFs. Lower viscosity (thinner) fluids reduce transmission churning (or spin) energy losses in the transmission, the extent to which depends on the test protocol, hardware platform and specifically the temperature range used to evaluate fuel economy benefits. In most testing, the magnitude of the fuel economy benefit is roughly equivalent to the precision of the test being used to measure it, so careful test operation, statistical design of experiments and numerical analysis of the results are necessary[2].

    Lower viscosity ATFs can be a challenge for the transmission hardware, especially with respect to pump losses and gear and bearing durability. Thinner fluids leak easier through pumps and seals. Likewise, a lower viscosity fluid usually means thinner protective films for clutches, bearings and gears, unless fluid design is specifically altered to compensate for the drop in kinematic viscosity[3]. Higher quality base oils may be needed for the lower viscosity fluids to ensure their robustness with respect to volatility, which affects oil volume within the transmission during operating life.

    Meanwhile, in addition to the ATF changes, most automakers have moved to new hardware, including additional gears (i.e., six-, seven- and eight-speeds), start-up devices and lighter transmissions, to further enhance fuel economy in their automatic transmissions (ATs). The additional shifting energy can affect the durability of the transmission, particularly in the clutch packs (friction plates) and the fluid. Along with more clutch applications, the new AT hardware designs typically offer smaller sumps that allow less fluid volume and less time in the sump for the ATF to release air and reduce foam. The combination of new hardware and less ATF requires an increased level of additive performance. Many ATFs on the Asian market contain additives designed well before the release of the new six-speed transmission hardware.

    Since many of these new transmission systems involve high-energy requirements, additive technology must be developed to meet the increasing energy requirements of these advanced systems.Additive packages for automatic transmission fluids are often formulated with several components, including, extreme pressure agents, anti-wear agents, anti-oxidants, corrosion inhibitors, metal deactivators, rust inhibitors, friction modifiers, dispersants, detergents, anti-foam agents and viscosity index improvers. However, not all additives interact predictably or favorably with one another. The friction properties are particularly important in clutches that need more friction to transfer torque but less friction in gears, bearings and seals.

    Another important performance requirement for an automatic transmission fluid is its ability to prevent noise, vibration, and harshness of shift (NVH) from occurring in a transmission.During operation, a vehicle experiences a combination of torsional and axial vibrations that can affect vehicle performance and occupant comfort when the magnitude of the vibrations exceeds a certain threshold.These vibrations and their effects are major contributors to NVH. Potential sources of NVH include engine firing pulses, valve motion, engine vibrations and tire-road interactions - any of which can induce self-excitation or forced vibrations in the vehicle.Vibrations from these sources are transferred through engine mounts, transmission bearings, drive shaft bearings, tires (via steering) and axle suspensions to the passenger compartment by way of the vehicle frame, steering wheel or brake pedal.

    For reasons discussed above, the optimum performance additive and fluid design for the new step-AT hardware may require a significant increase over existing commercial ATFs in four performance areas: 1) friction durability and higher torque capacity in the shifting clutches and the torque converter; 2) anti-foam and anti-aeration durability; 3) anti-wear and extreme pressure capacity at lower viscosity; and 4) anti-rust and anti-corrosion properties.There are significant oxidation and viscometric performance benefits that come to ATFs by employing higher quality base oils and lower finished ATF viscosities, so less advancement of additive technology may be needed in these two performance areas.EP, friction durability and corrosion performance all require ATF additives that migrate to (and adsorb onto) either a steel or paper surface.Usually a balance of surface-active components is required to achieve acceptable overall ATF performance; this need for balance usually limits significant performance breakthroughs[4].

    This paper reports investigations into a new six-speed ATF additive design using performance tests common to Asian automakers (original equipment manufacturers, OEMs). Each OEM has a set of ATF qualification tests which usually have additive appetites different from those of the tests of other OEMs. Yet there is enough regional similarity of test rigs and procedures (JASO, CEC, ASTM) to allow definition of a generic Asian six-speed ATF profile, which would be different both in test performance and additive design from either of the corresponding optimum European or North American six-speed ATFs. The paper introduces a new Asian step-ATF additive and offers supporting data from friction durability, torque capacity, EP, wear and rust testing, in

    support of corresponding performance claims.

    1 New Six-Speed ATF

    A new six-speed Asian additive system has been developed by this laboratory with critical performance features highlighted in this section. The finished ATF performance is shown below with the fluid code ATF-6. ATF-6 is formulated using conventional mineral oil only, with a 100 ℃ kinematic viscosity of 5.6 cSt and a -40 ℃ Brookfield viscosity of under 10,000 cP. Table 1 contains a limited viscometric and elemental profile of select Asian factory-fill ATFs, coded as ATF-A to ATF-D.

    1.1 EP and Wear Performance

    Figures 1(a, b) shows results from the 4-ball EP and 4-ball wear tests, which are standard industry procedures for the region[5-6]. In the case of EP, the benefit to ATF-6 over the comparison fluids is significant beyond a 95% confidence level. The benefit of ATF-6 in the wear test is measurable but less significant.Most importantly, in EP and wear, ATF-6 at a 5.6 cSt Kv100 ℃ is as good as, or better than, other commercial fluids formulated at 7.2 cSt.

    1.2 Torque Capacity Level and Durability

    The JASO M348 (2002) SAE#2 procedure using the NW-461E friction material evaluates torque capacity (μt) and shifting clutch friction durability over 5,000 cycles (43 hours), as part of the current JASO M315-2002 ATF specification.Figures 2(a, b) offer results on the torque capacity μt and shifting clutch (μ0/μD) durability of ATF-6 and ATF-D. While the ATF-D system suffers a continuing drop in torque capacity with test time (15% drop at 5,000 cycles), ATF-6 offers an equivalent level of torque but more stable torque capacity. (Minimum performance over the 5,000 test cycles is most relevant.)

    The ATF-6 style fluid also provides excellent durability in friction tests required in the USA by Ford and General Motors (DEXRONk). The ATF-6 style fluid was evaluated in the GM cycling test, GM plate friction test, GM band test and the Ford 30K fiction test; the results demonstrate excellent friction stability in these tests. Test results are shown in Figures 3, 4, 5 and 6.

    1.3 Low Speed Friction Durability

    The JASO M349-2001 Low Velocity Friction Apparatus (LVFA) test carefully measures friction in the low speed (0-300 rpm) regime, most relevant to shift start-up devices.The Coefficient of Friction (COF) level μ is measured as a function of relative speed (rpm, v), time (test hours), temperature (ATF sump) and plate friction measurement method (sweep or discrete-step mode).

    The number of test hours required for the slope of either the 40 ℃ or 80 ℃ μ-v curve to become negative, at the 50 rpm(0.3 m/s) and 150 rpm (0.9 m/s) speed point, is the standard JASO definition of fluid failure (friction durability lifetime).Note that JASO friction durability is defined in terms only of μ-v slope, not friction level, so fluids with steadily dropping low speed friction levels may falsely appear to be durable.(Significant reductions in torque capacity may challenge the safety factors of the transmission calibration.)Since field vehicle shudder investigations frequently find improper friction levels and/or slope in their “root cause” analysis, a more useful measure of friction system robustness is to inspect the entire μ-v curve as a function of test time and sump temperature.

    Figures 7(a,b) reports friction durability lifetimes as defined by the JASO M349 method for several ATFs of Table 1.Figure 7(a) shows the 40 ℃, 150 rpm (0.9 m/s) slope durability.Figure 7(b) shows data from 80 ℃ testing. Among the fluids listed in Figures 7(a,b), ATF-C is known by this laboratory to have the longest LVFA durability of any ATF in Table 1, at approximately 450 hours. As shown in Figures 7(a,b), ATF-6 easily reaches the 1000-hour durability mark, representing a two-fold increase over ATF-C, which is a 12-fold improvement over the industry reference fluid Toyota T-III.

    1.4 Low Speed Friction Robustness

    ATF-6 offers a friction coefficient that is uniquely stable with respect to temperature in the 40 ℃ to 120 ℃ range, which represents the range of sump temperatures experienced by the ATF in a variety of applications. Each of the Figures 8(a-c) contains the reference set of fluids, with friction profiles representing each combination of temperature (40 ℃, 80 ℃ and 120 ℃) and sliding speed (1, 50 and 150 rpm). The extreme condition of 1 rpm and 120 ℃ represents the boundary friction regime; ATF-6 is the most stable fluid under this condition.The other extreme condition of 150 rpm and 40 ℃ is closest to the thin film (or potentially the hydrodynamic) friction regime; again ATF-6 is the most stable fluid under this condition for over 1,000 test hours.

    Figures 9(a-c) exhibit LVFA (JASO M349) friction at 40 ℃, 80 ℃ and 120 ℃ and sliding speeds of 1, 50 and 150 rpm.Commercial fluids ATF-A, -B and -C show higher friction coefficient at 40 ℃ but lower friction at 120 ℃. Some of these μ1 differences in friction coefficient with temperature approach a level of 0.040 or 40% with ATF-A. In the case of ATF-6, the μ1 difference is less than 0.010 or 5% across the temperature range.Similar trends are also seen in friction at 50 rpm (μ50) and 150 rpm(μ150). The friction coefficient of ATF-6 is effectively independent of temperature and this robustness will allow new transmissions to operate more smoothly with less complex calibrations.

    Torque capacity of the fluid can be defined by the lowest friction level obtained during the LVFA test. Normally, the lowest friction can be seen in μ1 (friction coefficient at 1 rpm) at 120 ℃. As shown in Figure 8(a) and Figures 9(a-c), ATF-6 provides 9%~18% higher torque capacity as compared to the other commercial fluids. Similar phenomena were seen in the Ford 30,000 friction test, as shown in Figure 6.

    2 Conclusions

    In summary, this paper reports development of a mineral oil based, Asian focused ATF that offers over 1,000 hours of LVFA friction durability, twice the performance of any current commercial Asian ATF, with comparable torque capacity.Even at a low finished fluid viscosity, the additive system delivers anti-wear and EP performance well above other higher viscosity fluids in the region.This suggests that good EP performance can be achieved with friction-durable fluids.The fluid provides excellent friction properties, including durability and stability with respect to temperature.The fluid represents a qualitatively new level of durability which may enable new types of transmission hardware or calibrations.

    Acknowledgements

    The authors thank coworkers at Afton′s automatic transmission fluid research labs in Japan (Takuo Takano), England and the United States (Dave Strait, Kevin Strait, Dave Harer) for their help.

    References:

    [1] GMN 10060, General Motors DEXRONk-VI ATF Service-Fill Specification[S].

    [2] Box G,Hunter W,Hunter J.Statistics for Experimenters[M].New York:Wiley & Sons, 1975.

    [3] Harvey P Nixon, Harry Zantopulos. Observations of the Impact of Lubricant Additives on the Fatigue Life Performance of Tapered Roller Bearings[C]. SAE Paper 952124.

    [4] A G Papay. Automatic Transmission Fluids DEXRONk II and Beyond[A]. Proceedings of 43rd STLE Annual Meeting[C]. Cleveland Ohio, USA: 1988.

    [5] ASTM D2783, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids[S],1995.

    [6] ASTM D4172, Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid[S],1994.

    收稿日期:2008-08-19。

    作者簡介:Kenji Yatsunami, male, graduated in chemical engineering of Tokyo Institute of Technology in 1968.He started his carrier of lubricant additive formulation development at Mitsubishi Monsanto Chemical and is responsible to ATF formulation development at Afton Chemical Tsukuba Laboratory in Japan. He is the author of several technical papers and Patents.

    猜你喜歡
    收稿標(biāo)識碼分類號
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    A Study on the Change and Developmentof English Vocabulary
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    Translation on Deixis in English and Chinese
    Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
    Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
    潤滑油(2014年3期)2014-11-07 14:30:02
    A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma
    The law of exercise applies on individual behavior change development
    Significance of 18F—FDG PET / CT imaging in the evaluation of the efficacy of lymphoma
    Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions
    自然雜志(2013年2期)2013-08-21 09:34:56

    亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 男女之事视频高清在线观看| 精品久久久久久,| 成人av一区二区三区在线看| 国产探花在线观看一区二区| xxxwww97欧美| 一夜夜www| 色综合亚洲欧美另类图片| 日本黄色视频三级网站网址| 九色国产91popny在线| 99久久国产精品久久久| 国产亚洲精品久久久久5区| 久久这里只有精品中国| 欧美不卡视频在线免费观看 | 色在线成人网| 精品人妻1区二区| 老司机深夜福利视频在线观看| 精品日产1卡2卡| 非洲黑人性xxxx精品又粗又长| 免费看十八禁软件| 搡老妇女老女人老熟妇| 亚洲av日韩精品久久久久久密| 欧美午夜高清在线| 2021天堂中文幕一二区在线观| 色哟哟哟哟哟哟| 女同久久另类99精品国产91| 欧美绝顶高潮抽搐喷水| 99精品在免费线老司机午夜| 国产精品久久电影中文字幕| 久久香蕉激情| 一个人观看的视频www高清免费观看 | 国产黄a三级三级三级人| 午夜福利在线在线| 日韩欧美 国产精品| 日韩国内少妇激情av| 黑人操中国人逼视频| 18禁国产床啪视频网站| 国产男靠女视频免费网站| 国产乱人伦免费视频| 亚洲自偷自拍图片 自拍| 男男h啪啪无遮挡| 91大片在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本一区二区免费在线视频| 母亲3免费完整高清在线观看| 久久久精品欧美日韩精品| 嫩草影院精品99| 国产精品一区二区三区四区久久| 亚洲国产精品sss在线观看| 身体一侧抽搐| 伊人久久大香线蕉亚洲五| www.自偷自拍.com| 日本 av在线| 天堂√8在线中文| 亚洲av成人不卡在线观看播放网| 国产爱豆传媒在线观看 | 欧美一区二区国产精品久久精品 | 免费搜索国产男女视频| 久久中文字幕一级| 久久久水蜜桃国产精品网| 在线免费观看的www视频| 午夜福利18| 亚洲专区中文字幕在线| 亚洲国产高清在线一区二区三| 亚洲国产精品合色在线| 成人精品一区二区免费| 久久午夜综合久久蜜桃| √禁漫天堂资源中文www| 首页视频小说图片口味搜索| aaaaa片日本免费| tocl精华| 中国美女看黄片| 成人午夜高清在线视频| 国产精品自产拍在线观看55亚洲| 99久久精品热视频| 在线观看一区二区三区| 国产主播在线观看一区二区| avwww免费| 97人妻精品一区二区三区麻豆| 一进一出抽搐gif免费好疼| 国产精品久久久久久久电影 | 欧美午夜高清在线| 国内揄拍国产精品人妻在线| 国产精品久久久人人做人人爽| 人人妻,人人澡人人爽秒播| 老司机午夜十八禁免费视频| 一级片免费观看大全| 亚洲九九香蕉| 中文字幕熟女人妻在线| 欧美黑人欧美精品刺激| 国产精品久久久久久精品电影| 亚洲精品一区av在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成网站在线播放欧美日韩| www日本在线高清视频| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 人妻夜夜爽99麻豆av| 亚洲人成网站在线播放欧美日韩| 欧美精品亚洲一区二区| 日韩国内少妇激情av| 国产成+人综合+亚洲专区| 亚洲中文日韩欧美视频| 国产精品一区二区免费欧美| www.精华液| 精品日产1卡2卡| 国产v大片淫在线免费观看| 久久久久性生活片| 一进一出抽搐动态| 亚洲欧美日韩高清专用| 俺也久久电影网| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区91| 国产一区二区三区在线臀色熟女| 国产av不卡久久| 精品乱码久久久久久99久播| 免费av毛片视频| 日韩欧美一区二区三区在线观看| 日本 av在线| 99re在线观看精品视频| 男女午夜视频在线观看| 午夜免费成人在线视频| 人妻夜夜爽99麻豆av| 久久久久久免费高清国产稀缺| 国产精品99久久99久久久不卡| 激情在线观看视频在线高清| 9191精品国产免费久久| 国产激情欧美一区二区| 久久久久久久久中文| 在线观看舔阴道视频| 在线十欧美十亚洲十日本专区| 日韩精品中文字幕看吧| 少妇熟女aⅴ在线视频| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 国产一级毛片七仙女欲春2| 日韩欧美 国产精品| 又粗又爽又猛毛片免费看| av天堂在线播放| 亚洲一区二区三区色噜噜| 人妻夜夜爽99麻豆av| 91字幕亚洲| 精品人妻1区二区| 免费电影在线观看免费观看| 精品国产美女av久久久久小说| 久久精品夜夜夜夜夜久久蜜豆 | 两个人免费观看高清视频| 岛国视频午夜一区免费看| 天堂动漫精品| 中文字幕熟女人妻在线| 成人午夜高清在线视频| a在线观看视频网站| 国产熟女午夜一区二区三区| 亚洲人与动物交配视频| 亚洲成av人片免费观看| av超薄肉色丝袜交足视频| 男女视频在线观看网站免费 | 看免费av毛片| 夜夜躁狠狠躁天天躁| tocl精华| 欧美乱妇无乱码| 露出奶头的视频| 久久精品国产亚洲av高清一级| 色播亚洲综合网| 亚洲欧美日韩高清专用| 国产视频内射| 国产精品美女特级片免费视频播放器 | 国产私拍福利视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品久久视频播放| 亚洲成av人片免费观看| 狂野欧美白嫩少妇大欣赏| 免费在线观看亚洲国产| www国产在线视频色| 国产久久久一区二区三区| 制服人妻中文乱码| 脱女人内裤的视频| 亚洲国产日韩欧美精品在线观看 | 国产精品一及| 女同久久另类99精品国产91| 一本精品99久久精品77| 日本三级黄在线观看| 亚洲欧洲精品一区二区精品久久久| 国产又黄又爽又无遮挡在线| 免费一级毛片在线播放高清视频| 精品高清国产在线一区| 亚洲国产日韩欧美精品在线观看 | 亚洲男人天堂网一区| 99精品欧美一区二区三区四区| 亚洲中文av在线| 亚洲九九香蕉| 国产精华一区二区三区| 在线观看免费午夜福利视频| 夜夜夜夜夜久久久久| 99久久综合精品五月天人人| 伦理电影免费视频| 日韩大尺度精品在线看网址| 精品久久久久久久人妻蜜臀av| 国产亚洲精品一区二区www| 又黄又粗又硬又大视频| 欧美精品啪啪一区二区三区| 国产亚洲精品av在线| 可以在线观看毛片的网站| 亚洲精品国产一区二区精华液| 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 观看免费一级毛片| 成人一区二区视频在线观看| 欧美乱码精品一区二区三区| 在线十欧美十亚洲十日本专区| 国产亚洲av高清不卡| 18禁观看日本| 亚洲国产精品sss在线观看| 少妇被粗大的猛进出69影院| 国产av不卡久久| 丝袜美腿诱惑在线| 久久久久久久精品吃奶| 两性夫妻黄色片| 欧美丝袜亚洲另类 | 曰老女人黄片| 妹子高潮喷水视频| 国产av在哪里看| 国产精品久久久久久精品电影| 久久精品综合一区二区三区| 国产成人精品无人区| 欧美色视频一区免费| 成人国语在线视频| 久久国产精品人妻蜜桃| 一区二区三区国产精品乱码| 欧美 亚洲 国产 日韩一| 久久精品91蜜桃| 人人妻,人人澡人人爽秒播| avwww免费| 舔av片在线| 夜夜爽天天搞| 国产成人aa在线观看| 正在播放国产对白刺激| 91九色精品人成在线观看| 妹子高潮喷水视频| 天堂动漫精品| 日本一二三区视频观看| 18禁黄网站禁片午夜丰满| 色av中文字幕| 窝窝影院91人妻| 午夜激情av网站| 成人av一区二区三区在线看| 国内揄拍国产精品人妻在线| 国产精品九九99| av在线天堂中文字幕| 国产成人影院久久av| 99久久国产精品久久久| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣巨乳人妻| 一边摸一边做爽爽视频免费| 午夜影院日韩av| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 欧美日韩福利视频一区二区| 日本在线视频免费播放| 中文资源天堂在线| 亚洲人成网站在线播放欧美日韩| 国产一区二区在线观看日韩 | 午夜老司机福利片| 脱女人内裤的视频| 国产亚洲av高清不卡| 在线观看一区二区三区| 一个人免费在线观看电影 | 三级毛片av免费| 91在线观看av| 国产精品1区2区在线观看.| 久久精品人妻少妇| 国产精品日韩av在线免费观看| 精品国产乱子伦一区二区三区| 午夜日韩欧美国产| 亚洲中文字幕日韩| 国产av不卡久久| av片东京热男人的天堂| 特级一级黄色大片| 在线观看一区二区三区| 国产高清有码在线观看视频 | 精品久久久久久久久久久久久| 精品福利观看| 97人妻精品一区二区三区麻豆| av在线天堂中文字幕| 免费在线观看黄色视频的| 级片在线观看| 精品福利观看| 五月玫瑰六月丁香| 亚洲精华国产精华精| 蜜桃久久精品国产亚洲av| 日本熟妇午夜| 2021天堂中文幕一二区在线观| 免费高清视频大片| 欧美在线一区亚洲| 欧美丝袜亚洲另类 | 日韩精品免费视频一区二区三区| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 在线观看免费午夜福利视频| 欧美久久黑人一区二区| 9191精品国产免费久久| 亚洲熟女毛片儿| 啦啦啦免费观看视频1| 国产精品九九99| 青草久久国产| 天堂影院成人在线观看| 在线观看免费视频日本深夜| 美女高潮喷水抽搐中文字幕| a在线观看视频网站| 成人18禁在线播放| 国产精品国产高清国产av| 国产av在哪里看| 亚洲av电影在线进入| 国产成人av教育| 看片在线看免费视频| 身体一侧抽搐| 男女床上黄色一级片免费看| 麻豆av在线久日| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| www.自偷自拍.com| 久久久水蜜桃国产精品网| 国产亚洲av嫩草精品影院| 在线播放国产精品三级| 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 日本精品一区二区三区蜜桃| 18美女黄网站色大片免费观看| 精品欧美一区二区三区在线| 国产免费男女视频| 午夜福利18| 久久人妻福利社区极品人妻图片| 又爽又黄无遮挡网站| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 天堂动漫精品| 日韩大码丰满熟妇| 精品久久久久久成人av| 亚洲专区字幕在线| 巨乳人妻的诱惑在线观看| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 亚洲成av人片在线播放无| 国产又色又爽无遮挡免费看| 69av精品久久久久久| www.精华液| 国产精品电影一区二区三区| 在线观看66精品国产| 日本 av在线| 一个人观看的视频www高清免费观看 | 亚洲电影在线观看av| 国产黄a三级三级三级人| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品中文字幕一二三四区| 日本在线视频免费播放| 久久精品91蜜桃| 国产成年人精品一区二区| 国产熟女午夜一区二区三区| 黄色毛片三级朝国网站| 男人舔奶头视频| 久久久国产精品麻豆| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 亚洲自拍偷在线| 好男人在线观看高清免费视频| 成人永久免费在线观看视频| 午夜免费观看网址| 亚洲免费av在线视频| 又黄又爽又免费观看的视频| 中文字幕人成人乱码亚洲影| cao死你这个sao货| 中文在线观看免费www的网站 | 亚洲国产精品成人综合色| 国产99久久九九免费精品| 久久这里只有精品中国| 老司机午夜十八禁免费视频| av免费在线观看网站| 制服丝袜大香蕉在线| 国产精品野战在线观看| 天堂动漫精品| 亚洲avbb在线观看| 色哟哟哟哟哟哟| 18禁美女被吸乳视频| 成人18禁在线播放| 欧美精品亚洲一区二区| 免费看a级黄色片| 男女之事视频高清在线观看| 午夜成年电影在线免费观看| 欧美精品亚洲一区二区| 亚洲,欧美精品.| 国产成人aa在线观看| netflix在线观看网站| 18禁黄网站禁片免费观看直播| 成人午夜高清在线视频| 亚洲avbb在线观看| 全区人妻精品视频| 特大巨黑吊av在线直播| 亚洲最大成人中文| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片| 男女那种视频在线观看| 一区二区三区高清视频在线| 亚洲无线在线观看| 欧美中文日本在线观看视频| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 成人18禁高潮啪啪吃奶动态图| 身体一侧抽搐| or卡值多少钱| 国产97色在线日韩免费| 在线观看舔阴道视频| 亚洲成人免费电影在线观看| 啦啦啦免费观看视频1| 一夜夜www| 久久香蕉激情| 中文字幕av在线有码专区| 亚洲 国产 在线| 国产亚洲精品久久久久5区| 欧美3d第一页| 国产精品99久久99久久久不卡| 1024香蕉在线观看| 在线观看免费日韩欧美大片| 国产精品 欧美亚洲| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 99热6这里只有精品| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 免费在线观看黄色视频的| 韩国av一区二区三区四区| 午夜福利18| 亚洲黑人精品在线| 国内精品久久久久精免费| 99国产极品粉嫩在线观看| 岛国在线免费视频观看| 精品久久久久久久久久久久久| 婷婷亚洲欧美| 国产精品久久久久久精品电影| 亚洲欧美日韩高清专用| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 欧美日韩一级在线毛片| 久久精品国产综合久久久| 亚洲精品久久成人aⅴ小说| 欧美乱妇无乱码| 亚洲 欧美一区二区三区| 日韩欧美精品v在线| 中国美女看黄片| 99国产精品99久久久久| 亚洲真实伦在线观看| 一个人观看的视频www高清免费观看 | 三级男女做爰猛烈吃奶摸视频| 波多野结衣高清作品| 欧美黄色淫秽网站| 全区人妻精品视频| 国产精品自产拍在线观看55亚洲| 亚洲avbb在线观看| 999精品在线视频| 日本a在线网址| 久久久久久久久免费视频了| 免费看a级黄色片| a在线观看视频网站| 婷婷丁香在线五月| 人妻夜夜爽99麻豆av| or卡值多少钱| www.熟女人妻精品国产| 国产av在哪里看| 国产精品 国内视频| 麻豆一二三区av精品| av在线播放免费不卡| 国产熟女午夜一区二区三区| 国产午夜精品论理片| 免费在线观看完整版高清| 国产单亲对白刺激| 老司机靠b影院| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 搡老岳熟女国产| 在线观看日韩欧美| 国产精品1区2区在线观看.| 91成年电影在线观看| 日韩欧美国产在线观看| 国产三级在线视频| 午夜精品在线福利| 亚洲欧美日韩东京热| 床上黄色一级片| 黄色丝袜av网址大全| 午夜影院日韩av| 久久午夜亚洲精品久久| 成人高潮视频无遮挡免费网站| 国产av不卡久久| www.精华液| 亚洲乱码一区二区免费版| 国产av又大| 国产精品99久久99久久久不卡| 91成年电影在线观看| 一本精品99久久精品77| 日韩成人在线观看一区二区三区| 给我免费播放毛片高清在线观看| 超碰成人久久| 国产午夜精品久久久久久| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| a在线观看视频网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲激情在线av| 午夜成年电影在线免费观看| 国产野战对白在线观看| 久久这里只有精品19| 午夜福利高清视频| 欧美日韩精品网址| 国产黄a三级三级三级人| 国产人伦9x9x在线观看| 久久99热这里只有精品18| 精品久久蜜臀av无| 亚洲美女黄片视频| 亚洲欧美激情综合另类| 久久久久久免费高清国产稀缺| 18美女黄网站色大片免费观看| 国产成+人综合+亚洲专区| 亚洲狠狠婷婷综合久久图片| 黑人欧美特级aaaaaa片| 国产精品一及| 级片在线观看| 久久亚洲精品不卡| 久久这里只有精品19| 日韩免费av在线播放| 久久九九热精品免费| 国产精品乱码一区二三区的特点| videosex国产| 国产激情欧美一区二区| 长腿黑丝高跟| 99热这里只有是精品50| 在线免费观看的www视频| 欧美一级毛片孕妇| 身体一侧抽搐| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久久久亚洲av鲁大| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区| 香蕉av资源在线| 欧美成人免费av一区二区三区| 日韩欧美国产一区二区入口| 黄片大片在线免费观看| 手机成人av网站| 一个人免费在线观看电影 | 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 最新在线观看一区二区三区| 老熟妇仑乱视频hdxx| 国产熟女午夜一区二区三区| 亚洲一区二区三区色噜噜| 国产成人精品久久二区二区91| 亚洲中文日韩欧美视频| 久久精品影院6| 国内精品久久久久精免费| 亚洲,欧美精品.| 日韩欧美国产在线观看| 国产精品久久久久久精品电影| 亚洲第一欧美日韩一区二区三区| 亚洲精品一区av在线观看| av片东京热男人的天堂| 欧美又色又爽又黄视频| 国产成人aa在线观看| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频 | 最近视频中文字幕2019在线8| 看片在线看免费视频| 99国产综合亚洲精品| 两性午夜刺激爽爽歪歪视频在线观看 | 岛国在线免费视频观看| 搞女人的毛片| 久久久久久久午夜电影| 男女那种视频在线观看| 午夜免费观看网址| 日韩欧美国产在线观看| 在线永久观看黄色视频| 高清在线国产一区| 婷婷六月久久综合丁香| 欧洲精品卡2卡3卡4卡5卡区| 欧美在线黄色| 欧美一级毛片孕妇| 草草在线视频免费看| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品电影一区二区三区| 亚洲国产欧美人成| 午夜日韩欧美国产| 欧美日韩亚洲综合一区二区三区_| 男男h啪啪无遮挡| 亚洲无线在线观看| 9191精品国产免费久久| 精品久久久久久久毛片微露脸| 麻豆一二三区av精品| 中文字幕熟女人妻在线| 精品高清国产在线一区| 90打野战视频偷拍视频| 韩国av一区二区三区四区| 精品免费久久久久久久清纯| 日本熟妇午夜| 最近最新免费中文字幕在线| 精品少妇一区二区三区视频日本电影| 又大又爽又粗| 成人特级黄色片久久久久久久| 欧美成人一区二区免费高清观看 | 欧美性长视频在线观看| 性色av乱码一区二区三区2| 欧美 亚洲 国产 日韩一| 18禁美女被吸乳视频| 欧美日韩瑟瑟在线播放|