• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low Viscosity?。粒酰簦铮恚幔簦椋恪。裕颍幔睿螅恚椋螅螅椋铮睢。疲欤酰椋洌蟆。鳎椋簦琛。牛睿瑁幔睿悖澹洹。疲颍椋悖簦椋铮睢。模酰颍幔猓椋欤椋簦?/h1>
    2009-03-11 06:49:50KenjiYatsunamiSamuelH.TersigniTANGHong-zhiLeeD.SaathoffChristopherS.Cleveland2MarkJones
    潤滑油 2009年1期
    關(guān)鍵詞:收稿標(biāo)識碼分類號

    Kenji Yatsunami?。樱幔恚酰澹臁。龋裕澹颍螅椋纾睿椤。裕粒危恰。龋铮睿纾瑁椤。蹋澹濉。模樱幔幔簦瑁铮妫妗。茫瑁颍椋螅簦铮穑瑁澹颉。樱茫欤澹觯澹欤幔睿洌病。停幔颍搿。剩铮睿澹?/p>

    Abstract:This study focused on the development of a new low viscosity automatic transmission fluid (ATF) with enhanced friction durability to meet the needs of new step type automatic transmissions. Recent high fuel prices encourage increased efficiency in the driveline, including the transmission. Reduction in fluid viscosity and wider use of slip control in torque converter clutches are two ways to practically improve fuel efficiency. Increased torque and more shifting is seen with a variety of new transmission hardware platforms, such as wet starting clutches, dual clutches and seven- or eight-speed ATs.This suggests the need for enhanced levels of friction durability from the ATF.The new challenge from this hardware for the ATF formulator lies in the need to simultaneously meet the wear, friction durability and torque capacity requirements at low viscosity in a cost-effective manner.

    This report introduced a new low viscosity fluid that represents a different commercial ATF formulation style.The new chemistry employs a low viscosity for increased fuel economy, while easily doubling the friction durability of current conventional ATFs and offering higher torque and better EP.

    Key words:six-speed ATF; low viscosity; friction durability

    中圖分類號:TE626.38 文獻(xiàn)標(biāo)識碼:A

    0 Introduction

    Automobile manufacturers obtain some corporate average vehicle fuel economy (CAFE) benefits by employing lower viscosity ATFs. Previous generations of ATFs had a 100 ℃ kinematic viscosity (Kv100 ℃) in the range of 7.0 to 8.0 cSt; the new generation of ATFs has a fresh oil Kv100 ℃ between 5.4 and 6.4 cSt[1]. Accordingly, low temperature (-40 ℃) and start-up viscosities (0 to 25 ℃) are also lower with the new ATFs. Lower viscosity (thinner) fluids reduce transmission churning (or spin) energy losses in the transmission, the extent to which depends on the test protocol, hardware platform and specifically the temperature range used to evaluate fuel economy benefits. In most testing, the magnitude of the fuel economy benefit is roughly equivalent to the precision of the test being used to measure it, so careful test operation, statistical design of experiments and numerical analysis of the results are necessary[2].

    Lower viscosity ATFs can be a challenge for the transmission hardware, especially with respect to pump losses and gear and bearing durability. Thinner fluids leak easier through pumps and seals. Likewise, a lower viscosity fluid usually means thinner protective films for clutches, bearings and gears, unless fluid design is specifically altered to compensate for the drop in kinematic viscosity[3]. Higher quality base oils may be needed for the lower viscosity fluids to ensure their robustness with respect to volatility, which affects oil volume within the transmission during operating life.

    Meanwhile, in addition to the ATF changes, most automakers have moved to new hardware, including additional gears (i.e., six-, seven- and eight-speeds), start-up devices and lighter transmissions, to further enhance fuel economy in their automatic transmissions (ATs). The additional shifting energy can affect the durability of the transmission, particularly in the clutch packs (friction plates) and the fluid. Along with more clutch applications, the new AT hardware designs typically offer smaller sumps that allow less fluid volume and less time in the sump for the ATF to release air and reduce foam. The combination of new hardware and less ATF requires an increased level of additive performance. Many ATFs on the Asian market contain additives designed well before the release of the new six-speed transmission hardware.

    Since many of these new transmission systems involve high-energy requirements, additive technology must be developed to meet the increasing energy requirements of these advanced systems.Additive packages for automatic transmission fluids are often formulated with several components, including, extreme pressure agents, anti-wear agents, anti-oxidants, corrosion inhibitors, metal deactivators, rust inhibitors, friction modifiers, dispersants, detergents, anti-foam agents and viscosity index improvers. However, not all additives interact predictably or favorably with one another. The friction properties are particularly important in clutches that need more friction to transfer torque but less friction in gears, bearings and seals.

    Another important performance requirement for an automatic transmission fluid is its ability to prevent noise, vibration, and harshness of shift (NVH) from occurring in a transmission.During operation, a vehicle experiences a combination of torsional and axial vibrations that can affect vehicle performance and occupant comfort when the magnitude of the vibrations exceeds a certain threshold.These vibrations and their effects are major contributors to NVH. Potential sources of NVH include engine firing pulses, valve motion, engine vibrations and tire-road interactions - any of which can induce self-excitation or forced vibrations in the vehicle.Vibrations from these sources are transferred through engine mounts, transmission bearings, drive shaft bearings, tires (via steering) and axle suspensions to the passenger compartment by way of the vehicle frame, steering wheel or brake pedal.

    For reasons discussed above, the optimum performance additive and fluid design for the new step-AT hardware may require a significant increase over existing commercial ATFs in four performance areas: 1) friction durability and higher torque capacity in the shifting clutches and the torque converter; 2) anti-foam and anti-aeration durability; 3) anti-wear and extreme pressure capacity at lower viscosity; and 4) anti-rust and anti-corrosion properties.There are significant oxidation and viscometric performance benefits that come to ATFs by employing higher quality base oils and lower finished ATF viscosities, so less advancement of additive technology may be needed in these two performance areas.EP, friction durability and corrosion performance all require ATF additives that migrate to (and adsorb onto) either a steel or paper surface.Usually a balance of surface-active components is required to achieve acceptable overall ATF performance; this need for balance usually limits significant performance breakthroughs[4].

    This paper reports investigations into a new six-speed ATF additive design using performance tests common to Asian automakers (original equipment manufacturers, OEMs). Each OEM has a set of ATF qualification tests which usually have additive appetites different from those of the tests of other OEMs. Yet there is enough regional similarity of test rigs and procedures (JASO, CEC, ASTM) to allow definition of a generic Asian six-speed ATF profile, which would be different both in test performance and additive design from either of the corresponding optimum European or North American six-speed ATFs. The paper introduces a new Asian step-ATF additive and offers supporting data from friction durability, torque capacity, EP, wear and rust testing, in

    support of corresponding performance claims.

    1 New Six-Speed ATF

    A new six-speed Asian additive system has been developed by this laboratory with critical performance features highlighted in this section. The finished ATF performance is shown below with the fluid code ATF-6. ATF-6 is formulated using conventional mineral oil only, with a 100 ℃ kinematic viscosity of 5.6 cSt and a -40 ℃ Brookfield viscosity of under 10,000 cP. Table 1 contains a limited viscometric and elemental profile of select Asian factory-fill ATFs, coded as ATF-A to ATF-D.

    1.1 EP and Wear Performance

    Figures 1(a, b) shows results from the 4-ball EP and 4-ball wear tests, which are standard industry procedures for the region[5-6]. In the case of EP, the benefit to ATF-6 over the comparison fluids is significant beyond a 95% confidence level. The benefit of ATF-6 in the wear test is measurable but less significant.Most importantly, in EP and wear, ATF-6 at a 5.6 cSt Kv100 ℃ is as good as, or better than, other commercial fluids formulated at 7.2 cSt.

    1.2 Torque Capacity Level and Durability

    The JASO M348 (2002) SAE#2 procedure using the NW-461E friction material evaluates torque capacity (μt) and shifting clutch friction durability over 5,000 cycles (43 hours), as part of the current JASO M315-2002 ATF specification.Figures 2(a, b) offer results on the torque capacity μt and shifting clutch (μ0/μD) durability of ATF-6 and ATF-D. While the ATF-D system suffers a continuing drop in torque capacity with test time (15% drop at 5,000 cycles), ATF-6 offers an equivalent level of torque but more stable torque capacity. (Minimum performance over the 5,000 test cycles is most relevant.)

    The ATF-6 style fluid also provides excellent durability in friction tests required in the USA by Ford and General Motors (DEXRONk). The ATF-6 style fluid was evaluated in the GM cycling test, GM plate friction test, GM band test and the Ford 30K fiction test; the results demonstrate excellent friction stability in these tests. Test results are shown in Figures 3, 4, 5 and 6.

    1.3 Low Speed Friction Durability

    The JASO M349-2001 Low Velocity Friction Apparatus (LVFA) test carefully measures friction in the low speed (0-300 rpm) regime, most relevant to shift start-up devices.The Coefficient of Friction (COF) level μ is measured as a function of relative speed (rpm, v), time (test hours), temperature (ATF sump) and plate friction measurement method (sweep or discrete-step mode).

    The number of test hours required for the slope of either the 40 ℃ or 80 ℃ μ-v curve to become negative, at the 50 rpm(0.3 m/s) and 150 rpm (0.9 m/s) speed point, is the standard JASO definition of fluid failure (friction durability lifetime).Note that JASO friction durability is defined in terms only of μ-v slope, not friction level, so fluids with steadily dropping low speed friction levels may falsely appear to be durable.(Significant reductions in torque capacity may challenge the safety factors of the transmission calibration.)Since field vehicle shudder investigations frequently find improper friction levels and/or slope in their “root cause” analysis, a more useful measure of friction system robustness is to inspect the entire μ-v curve as a function of test time and sump temperature.

    Figures 7(a,b) reports friction durability lifetimes as defined by the JASO M349 method for several ATFs of Table 1.Figure 7(a) shows the 40 ℃, 150 rpm (0.9 m/s) slope durability.Figure 7(b) shows data from 80 ℃ testing. Among the fluids listed in Figures 7(a,b), ATF-C is known by this laboratory to have the longest LVFA durability of any ATF in Table 1, at approximately 450 hours. As shown in Figures 7(a,b), ATF-6 easily reaches the 1000-hour durability mark, representing a two-fold increase over ATF-C, which is a 12-fold improvement over the industry reference fluid Toyota T-III.

    1.4 Low Speed Friction Robustness

    ATF-6 offers a friction coefficient that is uniquely stable with respect to temperature in the 40 ℃ to 120 ℃ range, which represents the range of sump temperatures experienced by the ATF in a variety of applications. Each of the Figures 8(a-c) contains the reference set of fluids, with friction profiles representing each combination of temperature (40 ℃, 80 ℃ and 120 ℃) and sliding speed (1, 50 and 150 rpm). The extreme condition of 1 rpm and 120 ℃ represents the boundary friction regime; ATF-6 is the most stable fluid under this condition.The other extreme condition of 150 rpm and 40 ℃ is closest to the thin film (or potentially the hydrodynamic) friction regime; again ATF-6 is the most stable fluid under this condition for over 1,000 test hours.

    Figures 9(a-c) exhibit LVFA (JASO M349) friction at 40 ℃, 80 ℃ and 120 ℃ and sliding speeds of 1, 50 and 150 rpm.Commercial fluids ATF-A, -B and -C show higher friction coefficient at 40 ℃ but lower friction at 120 ℃. Some of these μ1 differences in friction coefficient with temperature approach a level of 0.040 or 40% with ATF-A. In the case of ATF-6, the μ1 difference is less than 0.010 or 5% across the temperature range.Similar trends are also seen in friction at 50 rpm (μ50) and 150 rpm(μ150). The friction coefficient of ATF-6 is effectively independent of temperature and this robustness will allow new transmissions to operate more smoothly with less complex calibrations.

    Torque capacity of the fluid can be defined by the lowest friction level obtained during the LVFA test. Normally, the lowest friction can be seen in μ1 (friction coefficient at 1 rpm) at 120 ℃. As shown in Figure 8(a) and Figures 9(a-c), ATF-6 provides 9%~18% higher torque capacity as compared to the other commercial fluids. Similar phenomena were seen in the Ford 30,000 friction test, as shown in Figure 6.

    2 Conclusions

    In summary, this paper reports development of a mineral oil based, Asian focused ATF that offers over 1,000 hours of LVFA friction durability, twice the performance of any current commercial Asian ATF, with comparable torque capacity.Even at a low finished fluid viscosity, the additive system delivers anti-wear and EP performance well above other higher viscosity fluids in the region.This suggests that good EP performance can be achieved with friction-durable fluids.The fluid provides excellent friction properties, including durability and stability with respect to temperature.The fluid represents a qualitatively new level of durability which may enable new types of transmission hardware or calibrations.

    Acknowledgements

    The authors thank coworkers at Afton′s automatic transmission fluid research labs in Japan (Takuo Takano), England and the United States (Dave Strait, Kevin Strait, Dave Harer) for their help.

    References:

    [1] GMN 10060, General Motors DEXRONk-VI ATF Service-Fill Specification[S].

    [2] Box G,Hunter W,Hunter J.Statistics for Experimenters[M].New York:Wiley & Sons, 1975.

    [3] Harvey P Nixon, Harry Zantopulos. Observations of the Impact of Lubricant Additives on the Fatigue Life Performance of Tapered Roller Bearings[C]. SAE Paper 952124.

    [4] A G Papay. Automatic Transmission Fluids DEXRONk II and Beyond[A]. Proceedings of 43rd STLE Annual Meeting[C]. Cleveland Ohio, USA: 1988.

    [5] ASTM D2783, Standard Test Method for Measurement of Extreme-Pressure Properties of Lubricating Fluids[S],1995.

    [6] ASTM D4172, Standard Test Method for Wear Preventive Characteristics of Lubricating Fluid[S],1994.

    收稿日期:2008-08-19。

    作者簡介:Kenji Yatsunami, male, graduated in chemical engineering of Tokyo Institute of Technology in 1968.He started his carrier of lubricant additive formulation development at Mitsubishi Monsanto Chemical and is responsible to ATF formulation development at Afton Chemical Tsukuba Laboratory in Japan. He is the author of several technical papers and Patents.

    猜你喜歡
    收稿標(biāo)識碼分類號
    Standardized Manipulations of Heat-sensitive Moxibustion Therapy Specialty Committee of Heat-sensitive Moxibustion of WFCMS
    A Study on the Change and Developmentof English Vocabulary
    Perspectives on China′s General Medicine Education,Training,Development and Challenges
    Translation on Deixis in English and Chinese
    Process Mineralogy of a Low Grade Ag-Pb-Zn-CaF2 Sulphide Ore and Its Implications for Mineral Processing
    Study on the Degradation and Synergistic/antagonistic Antioxidizing Mechanism of Phenolic/aminic Antioxidants and Their Combinations
    潤滑油(2014年3期)2014-11-07 14:30:02
    A Comparative Study of HER2 Detection in Gastroscopic and Surgical Specimens of Gastric Carcinoma
    The law of exercise applies on individual behavior change development
    Significance of 18F—FDG PET / CT imaging in the evaluation of the efficacy of lymphoma
    Phase selection rules for complex multi-component alloys with equiatomic or close-to-equiatomic compositions
    自然雜志(2013年2期)2013-08-21 09:34:56

    国产一区二区亚洲精品在线观看| 亚洲中文字幕日韩| 成人欧美大片| 国产视频内射| 女人被狂操c到高潮| 日日干狠狠操夜夜爽| 精品国产三级普通话版| 国产极品精品免费视频能看的| 成人精品一区二区免费| 啦啦啦啦在线视频资源| 在现免费观看毛片| 色吧在线观看| 国产精品av视频在线免费观看| 午夜影院日韩av| 2021天堂中文幕一二区在线观| 日本与韩国留学比较| 亚洲精品粉嫩美女一区| 午夜激情欧美在线| 日韩在线高清观看一区二区三区 | 亚洲18禁久久av| 俺也久久电影网| 欧美日韩亚洲国产一区二区在线观看| 又黄又爽又免费观看的视频| 国产三级在线视频| 日韩强制内射视频| 啦啦啦啦在线视频资源| 黄色一级大片看看| 无遮挡黄片免费观看| 丰满乱子伦码专区| 在线看三级毛片| 日日夜夜操网爽| 午夜福利在线观看免费完整高清在 | 国产淫片久久久久久久久| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 我的女老师完整版在线观看| 亚洲最大成人av| 少妇的逼好多水| 国产免费av片在线观看野外av| 精品久久久久久久久亚洲 | 亚洲av五月六月丁香网| 国产精品av视频在线免费观看| 91久久精品国产一区二区成人| 国产单亲对白刺激| 婷婷亚洲欧美| 丰满的人妻完整版| 毛片女人毛片| 成人亚洲精品av一区二区| 91精品国产九色| 男人狂女人下面高潮的视频| 亚洲欧美激情综合另类| 中文字幕久久专区| 亚洲中文字幕一区二区三区有码在线看| 久久热精品热| 国内揄拍国产精品人妻在线| 综合色av麻豆| 欧美成人性av电影在线观看| 舔av片在线| 亚洲av日韩精品久久久久久密| 久久亚洲精品不卡| 国产91精品成人一区二区三区| 精品久久久久久久久av| 免费人成视频x8x8入口观看| 亚洲av免费高清在线观看| 麻豆成人午夜福利视频| 男插女下体视频免费在线播放| 国产精华一区二区三区| a在线观看视频网站| 日韩高清综合在线| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 两人在一起打扑克的视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 91久久精品国产一区二区三区| 国产美女午夜福利| 欧美激情国产日韩精品一区| 永久网站在线| 又爽又黄a免费视频| 深爱激情五月婷婷| 国产精品女同一区二区软件 | 久久精品国产99精品国产亚洲性色| 亚洲av免费高清在线观看| 如何舔出高潮| 久久久久久久久中文| 日日摸夜夜添夜夜添av毛片 | 亚洲av日韩精品久久久久久密| 成人午夜高清在线视频| 久久久色成人| 亚洲国产色片| 日韩欧美在线二视频| 91精品国产九色| 中文字幕人妻熟人妻熟丝袜美| АⅤ资源中文在线天堂| 99在线人妻在线中文字幕| 国产蜜桃级精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 狠狠狠狠99中文字幕| 1024手机看黄色片| 久久久国产成人精品二区| 尤物成人国产欧美一区二区三区| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 免费高清视频大片| 成年免费大片在线观看| 亚洲午夜理论影院| 成人国产麻豆网| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 最好的美女福利视频网| 欧美在线一区亚洲| 久久久久久久亚洲中文字幕| 22中文网久久字幕| 丝袜美腿在线中文| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 欧美xxxx性猛交bbbb| 国产69精品久久久久777片| 亚洲av不卡在线观看| 久久久精品大字幕| 老熟妇仑乱视频hdxx| 九色成人免费人妻av| 国产真实乱freesex| 国产亚洲精品综合一区在线观看| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 成人精品一区二区免费| 国产高清激情床上av| 18禁裸乳无遮挡免费网站照片| 日本一本二区三区精品| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 国产午夜精品论理片| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 日日摸夜夜添夜夜添小说| 午夜福利18| 国产伦人伦偷精品视频| 真实男女啪啪啪动态图| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 一本精品99久久精品77| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄a免费视频| 两个人的视频大全免费| 听说在线观看完整版免费高清| 老司机午夜福利在线观看视频| 在线a可以看的网站| 精品午夜福利在线看| 18禁黄网站禁片午夜丰满| 国产在线男女| 三级国产精品欧美在线观看| 美女大奶头视频| 搡老岳熟女国产| 久久久久久伊人网av| 欧美黑人巨大hd| av在线老鸭窝| 亚洲美女黄片视频| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 亚洲人成网站在线播放欧美日韩| 欧美日本亚洲视频在线播放| 日本色播在线视频| 天堂动漫精品| 在现免费观看毛片| 国产成人一区二区在线| 国产精品一区二区三区四区久久| 亚洲va在线va天堂va国产| 亚洲欧美激情综合另类| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 国产伦一二天堂av在线观看| 色噜噜av男人的天堂激情| 九色成人免费人妻av| 欧美3d第一页| 国产极品精品免费视频能看的| 久久久精品欧美日韩精品| 女的被弄到高潮叫床怎么办 | 日日干狠狠操夜夜爽| 十八禁国产超污无遮挡网站| 精品久久久久久久久亚洲 | 色在线成人网| 亚洲四区av| 久久久久久久久中文| 日韩精品有码人妻一区| 国产日本99.免费观看| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 蜜桃久久精品国产亚洲av| 日本黄大片高清| 黄色视频,在线免费观看| 亚洲不卡免费看| 国产免费一级a男人的天堂| 听说在线观看完整版免费高清| 久久久久久久久久久丰满 | 日本欧美国产在线视频| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 欧美极品一区二区三区四区| 欧美激情久久久久久爽电影| 亚洲美女黄片视频| 国产成年人精品一区二区| 久久久久久大精品| 毛片女人毛片| 久久国产精品人妻蜜桃| 国产精品98久久久久久宅男小说| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx在线观看| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 欧美一区二区精品小视频在线| 他把我摸到了高潮在线观看| 国产高清有码在线观看视频| 中文字幕精品亚洲无线码一区| 少妇熟女aⅴ在线视频| 88av欧美| 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 国产亚洲av嫩草精品影院| 尾随美女入室| 国产av不卡久久| 亚洲avbb在线观看| av在线观看视频网站免费| 午夜免费激情av| 国产亚洲精品av在线| 久久精品久久久久久噜噜老黄 | 自拍偷自拍亚洲精品老妇| 美女cb高潮喷水在线观看| 国产免费男女视频| 日韩强制内射视频| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区 | 九九热线精品视视频播放| 国内久久婷婷六月综合欲色啪| 国产乱人视频| 午夜免费激情av| 日韩国内少妇激情av| 少妇的逼好多水| 亚洲精品乱码久久久v下载方式| 日韩精品青青久久久久久| 欧美黑人巨大hd| 日韩在线高清观看一区二区三区 | 精品久久久久久成人av| 色在线成人网| 18禁黄网站禁片午夜丰满| 精品不卡国产一区二区三区| 欧美成人性av电影在线观看| 国产精品亚洲美女久久久| 亚洲自偷自拍三级| 国内久久婷婷六月综合欲色啪| 免费在线观看影片大全网站| 亚洲无线在线观看| 国产麻豆成人av免费视频| 日韩大尺度精品在线看网址| 国产精品乱码一区二三区的特点| 美女免费视频网站| 一级黄片播放器| 国产老妇女一区| 一夜夜www| 欧美最黄视频在线播放免费| 欧美黑人欧美精品刺激| 国产精品永久免费网站| 精品一区二区三区人妻视频| 亚洲18禁久久av| 久久午夜亚洲精品久久| 特大巨黑吊av在线直播| 成人欧美大片| 中文字幕av成人在线电影| 天堂√8在线中文| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 中文字幕av在线有码专区| 自拍偷自拍亚洲精品老妇| а√天堂www在线а√下载| 在线免费十八禁| 亚洲成av人片在线播放无| 久久精品国产清高在天天线| 免费黄网站久久成人精品| 亚洲真实伦在线观看| 久9热在线精品视频| 一级黄色大片毛片| 色播亚洲综合网| 18+在线观看网站| 国产精品一区二区三区四区久久| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区| 女的被弄到高潮叫床怎么办 | 欧美成人免费av一区二区三区| 国内少妇人妻偷人精品xxx网站| 99riav亚洲国产免费| 伊人久久精品亚洲午夜| 午夜亚洲福利在线播放| 欧美+日韩+精品| 亚洲无线在线观看| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| 此物有八面人人有两片| 国产成人av教育| 999久久久精品免费观看国产| 欧美在线一区亚洲| 色综合色国产| 亚洲av一区综合| 麻豆一二三区av精品| 天堂动漫精品| 国产综合懂色| 丰满人妻一区二区三区视频av| 国产v大片淫在线免费观看| 亚洲第一区二区三区不卡| or卡值多少钱| 热99re8久久精品国产| 免费一级毛片在线播放高清视频| 国内少妇人妻偷人精品xxx网站| 欧美黑人巨大hd| 免费看光身美女| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲欧美日韩高清在线视频| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产日韩欧美精品在线观看| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 国产精品女同一区二区软件 | 欧美成人a在线观看| 日本熟妇午夜| а√天堂www在线а√下载| 日日摸夜夜添夜夜添av毛片 | 色综合色国产| 一个人观看的视频www高清免费观看| 日韩国内少妇激情av| 偷拍熟女少妇极品色| 国产亚洲精品综合一区在线观看| 亚洲性夜色夜夜综合| 99久久精品一区二区三区| 亚洲av成人av| av在线老鸭窝| 国产精品一区二区三区四区久久| 99热精品在线国产| 国产av不卡久久| 国产成人a区在线观看| 高清日韩中文字幕在线| 一本精品99久久精品77| 亚洲av美国av| 免费在线观看日本一区| 亚洲熟妇中文字幕五十中出| 中文字幕久久专区| 成年女人永久免费观看视频| 日韩欧美在线乱码| 深爱激情五月婷婷| 日韩国内少妇激情av| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 欧美成人性av电影在线观看| 精品福利观看| 性色avwww在线观看| 一个人看的www免费观看视频| 亚洲黑人精品在线| 国产黄片美女视频| 精品久久久久久久末码| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 熟女电影av网| 麻豆国产av国片精品| 麻豆久久精品国产亚洲av| 桃红色精品国产亚洲av| 不卡视频在线观看欧美| 久久精品影院6| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 精品一区二区免费观看| 真人一进一出gif抽搐免费| 99久久精品一区二区三区| 亚洲国产精品sss在线观看| 一边摸一边抽搐一进一小说| 99热精品在线国产| 黄片wwwwww| 欧美色视频一区免费| 日本黄大片高清| 1024手机看黄色片| 亚洲精品亚洲一区二区| 在线看三级毛片| 国产av在哪里看| 桃色一区二区三区在线观看| 五月伊人婷婷丁香| 高清在线国产一区| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人| 露出奶头的视频| 日日摸夜夜添夜夜添av毛片 | 成人国产综合亚洲| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 久99久视频精品免费| 不卡一级毛片| av女优亚洲男人天堂| 中文字幕av成人在线电影| 很黄的视频免费| av在线观看视频网站免费| 免费看av在线观看网站| 亚洲美女视频黄频| 国产av一区在线观看免费| 日韩欧美三级三区| 天堂av国产一区二区熟女人妻| 久久久久久国产a免费观看| 麻豆一二三区av精品| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 嫩草影院新地址| 亚洲色图av天堂| 最后的刺客免费高清国语| 日本-黄色视频高清免费观看| 国产亚洲精品久久久com| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区| 欧美日本亚洲视频在线播放| 91麻豆av在线| 久久99热这里只有精品18| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 亚洲中文日韩欧美视频| 最近中文字幕高清免费大全6 | 日韩强制内射视频| 亚洲最大成人中文| a在线观看视频网站| 欧美三级亚洲精品| 精品人妻熟女av久视频| 亚洲欧美日韩无卡精品| 国内久久婷婷六月综合欲色啪| 亚州av有码| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 国产精品一区二区免费欧美| 97超视频在线观看视频| 可以在线观看毛片的网站| 亚洲精品色激情综合| 国产久久久一区二区三区| 精品国产三级普通话版| 成人美女网站在线观看视频| 舔av片在线| 欧美绝顶高潮抽搐喷水| 日本 欧美在线| 成年女人看的毛片在线观看| 在线免费观看不下载黄p国产 | 国产在线精品亚洲第一网站| 国产一区二区在线av高清观看| 国产精品野战在线观看| 日本爱情动作片www.在线观看 | 国产亚洲91精品色在线| 国产精品一区www在线观看 | 国产亚洲欧美98| 少妇丰满av| 国产综合懂色| 91久久精品国产一区二区三区| 一个人看视频在线观看www免费| 日本 欧美在线| 午夜福利在线观看免费完整高清在 | 美女高潮喷水抽搐中文字幕| 免费av观看视频| 天美传媒精品一区二区| 熟女电影av网| 一级黄片播放器| 精品久久久久久久久亚洲 | 亚洲最大成人av| 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 色av中文字幕| 国产男人的电影天堂91| 国产成人一区二区在线| 97热精品久久久久久| 一区二区三区高清视频在线| 免费看日本二区| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 制服丝袜大香蕉在线| 在线a可以看的网站| 简卡轻食公司| 婷婷色综合大香蕉| 成人美女网站在线观看视频| 美女xxoo啪啪120秒动态图| 欧美激情久久久久久爽电影| 日韩亚洲欧美综合| 久久国产乱子免费精品| 日本一本二区三区精品| 国产精品精品国产色婷婷| 国内精品一区二区在线观看| 国产亚洲精品久久久com| 人人妻,人人澡人人爽秒播| 亚洲久久久久久中文字幕| 亚洲熟妇中文字幕五十中出| 搞女人的毛片| 俺也久久电影网| 国产精品久久久久久亚洲av鲁大| 亚洲不卡免费看| 九色成人免费人妻av| 内射极品少妇av片p| 久久午夜福利片| 日韩人妻高清精品专区| 精品久久久久久成人av| 国产国拍精品亚洲av在线观看| 99热精品在线国产| 亚洲av一区综合| 国产亚洲精品久久久久久毛片| 国产成人av教育| 国内揄拍国产精品人妻在线| 成人欧美大片| 欧美在线一区亚洲| 22中文网久久字幕| 99热这里只有精品一区| 精品久久久久久久久av| 成人国产综合亚洲| 久99久视频精品免费| 午夜福利欧美成人| 黄色欧美视频在线观看| 精品免费久久久久久久清纯| 国内精品美女久久久久久| 免费看av在线观看网站| 国产精品人妻久久久影院| 国产精品亚洲美女久久久| a在线观看视频网站| 精品人妻1区二区| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| 国产精品一区二区三区四区免费观看 | 国产成人av教育| 国产主播在线观看一区二区| 亚洲三级黄色毛片| 女人十人毛片免费观看3o分钟| 亚洲国产高清在线一区二区三| 国产亚洲欧美98| 丰满人妻一区二区三区视频av| 中文资源天堂在线| 午夜福利视频1000在线观看| 精品人妻视频免费看| 国产成人a区在线观看| 麻豆国产97在线/欧美| 18+在线观看网站| 免费看美女性在线毛片视频| 成人永久免费在线观看视频| 深爱激情五月婷婷| 中文字幕高清在线视频| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 中文字幕熟女人妻在线| av天堂中文字幕网| 欧美色欧美亚洲另类二区| 久久久久久久久大av| 中国美白少妇内射xxxbb| 97热精品久久久久久| 精品人妻1区二区| 国产大屁股一区二区在线视频| 亚洲最大成人av| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看| 国产午夜福利久久久久久| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 91午夜精品亚洲一区二区三区 | 国产极品精品免费视频能看的| 99riav亚洲国产免费| 99视频精品全部免费 在线| 毛片一级片免费看久久久久 | 亚洲真实伦在线观看| 国产成人aa在线观看| 22中文网久久字幕| 18禁黄网站禁片午夜丰满| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 国产午夜福利久久久久久| 在线观看午夜福利视频| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 国语自产精品视频在线第100页| 欧美成人a在线观看| av福利片在线观看| 亚洲精品久久国产高清桃花| 国产高清不卡午夜福利| a在线观看视频网站| 亚洲电影在线观看av| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 俄罗斯特黄特色一大片| 尾随美女入室| 我要搜黄色片| 亚洲最大成人中文| 国产精品久久久久久av不卡| av天堂中文字幕网| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久久久毛片| 毛片女人毛片| 精品久久久久久,| 国产精品一区二区免费欧美| 制服丝袜大香蕉在线| 日本-黄色视频高清免费观看| 欧美丝袜亚洲另类 | 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩东京热| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 99热精品在线国产| 亚洲aⅴ乱码一区二区在线播放| 91久久精品电影网| 亚洲avbb在线观看| 色综合站精品国产| av福利片在线观看| 免费在线观看成人毛片| 99久久中文字幕三级久久日本| 亚洲无线观看免费| 午夜福利视频1000在线观看| 少妇人妻一区二区三区视频|