• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    2016-12-01 09:23:40QiujiongZhaoShaocongBaiChengChengBenzhangTaoLekaiWangShuangLiangLingYinXingyiHangAijiaShangDepartmentofNeurosurgeryChinesePLAGeneralHospitalBeijingChina2iGeneTechBiotechnologyCoLtdBeijingChinaDepartmentofNeurology

    Qiu-jiong Zhao, Shao-cong Bai, Cheng Cheng Ben-zhang Tao Le-kai Wang Shuang Liang Ling Yin, Xing-yi Hang, Ai-jia Shang Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China2 iGeneTech Biotechnology Co., Ltd., Beijing, China Department of Neurology, Chinese PLA General Hospital, Beijing, China

    Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: arraybased comparative genomic hybridization analysis

    Qiu-jiong Zhao1,#, Shao-cong Bai1,#, Cheng Cheng1, Ben-zhang Tao1, Le-kai Wang1, Shuang Liang1, Ling Yin3, Xing-yi Hang2,*, Ai-jia Shang1,*
    1 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
    2 iGeneTech Biotechnology Co., Ltd., Beijing, China
    3 Department of Neurology, Chinese PLA General Hospital, Beijing, China

    How to cite this article: Zhao QJ, Bai SC, Cheng C, Tao BZ, Wang LK, Liang S, Yin L, Hang XY, Shang AJ (2016) Association between chromosomal aberration of COX8C and tethered spinal cord syndrome∶ array-based comparative genomic hybridization analysis. Neural Regen Res 11(8)∶1333-1338.

    Ai-jia Shang, M.D., Ph.D. or Xing-yi Hang, Ph.D.,

    shangaj@163.com or

    xingyi.hang@igenetech.com.

    #These authors contributed

    equally to this study.

    orcid:

    0000-0002-4895-5442

    (Ai-jia Shang)

    0000-0002-3736-2203

    (Xing-yi Hang)

    Accepted: 2016-08-09

    Graphical Abstract

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

    nerve regeneration; neural tube defects; tethered spinal cord syndrome; comparative genomic hybridization; COX8C; gene function enrichment analysis; database of genomic variants; database of DECIPHER; copy number variations; neural regeneration

    Introduction

    Tethered spinal cord syndrome (TCS) is a neurodevelopmental disorder that results in spinal cord malformation (Payne, 2007; Cearns et al., 2016). TCS is classified as a neural tube defect, and although the incidence of neural tube defects is approximately 1% worldwide (Feuchtbaum et al., 1999; Tun?bilek et al., 1999; van der Put et al., 2001; Khoshnood et al., 2015; Atta et al., 2016), infants born with neural tube defects account for 20-25% of all congenital malformations (Laharwal et al., 2016). The causes of neural tube defects are multivariate, yet to date there is no convincing mechanistic evidence for their occurrence. Some possible contributing factors include gene mutations, chromosomal abnormalities, and environmental factors (Bassuk and Kibar, 2009; Joó, 2009a, b; Molloy et al., 2009; Wen et al., 2009). Recent studies have revealed novel risk factors for neural tube defects including heterozygous missense mutations in the genes, VANGL1 and FUZZY (Bartsch et al., 2012; Seo et al., 2015), as well as maternal folic acid deficiency (Bartsch et al., 2012; Seo et al., 2015). Altered methylation of MGMT, aDNA repair gene, is also associated with neural tube defects (Tran et al., 2012). Moreover, abnormal expression of genes coding for zinc finger proteins is reported to be risk factors (Grinberg and Millen, 2005; Costa-Lima et al., 2008).

    Previous studies have shown that chromosomal imbalances due to genomic instability are closely associated with neural developmental disorders (Au et al., 2010; Zhao et al., 2013). Copy number variations (CNVs) are found in patients with neural tube abnormalities in cerebral and spinal sections (Bassuk et al., 2013; Chen et al., 2013). Array-based comparative genomic hybridization (aCGH) is a modern technique for molecular karyotype analysis that combines conventional comparative genomic hybridization and microarray analysis (Saberi et al., 2014). In contrast to conventional hybridization, aCGH does not detect metaphase chromosomes. Instead, it targets genomic DNA to perform high-throughput screening of the whole genome for CNVs (Vissers et al., 2003). The aCGH approach can accurately locate CNVs on chromosomes, and clearly calculate CNV length and identify genes within variant fragments (Mosse et al., 2005). Nowadays, aCGH is commonly used for cancer and genetic disorder research (Kallioniemi, 2008; Sireteanu et al., 2012). In this study, we used aCGH to detect CNVs in three children with TCS and two healthy parents. In order to examine TCS pathogenesis at the chromosome and gene levels, we determined the relationship between these chromosomal aberrations and TCS, and consequently detected CNVs linked with occurrence and development of TCS.

    Subjects and Methods

    Subjects

    Three children diagnosed with typical TCS based on clinical criteria (Filippidis et al., 2010) by the Department of Neurosurgery at the Chinese PLA General Hospital and the Second Artillery General Hospital, and the healthy parents of Patient 1 were enrolled in the study. Peripheral blood samples were collected from the patients and healthy controls. Before initiation of the study, written consent was obtained from the guardians of all children. The study (Project ID: S2013-117-01) was approved by the ethics committee of the Chinese PLA General Hospital, China.

    Case 1 was a 2-year-old girl with a sacrococcygeal mass and right foot deformity. The sacrococcygeal mass was identified at birth. Physical examination revealed spina bifida. Strephenopodia of the right foot and a second enlarging sacrococcygeal mass were first observed at 8 months of age. The patient was diagnosed with TCS with myelomeningocele.

    Case 2 was a 12-year-old boy who presented with a lumbosacral mass at the age of 8 months. The patient was diagnosed with TCS with spinal cord lipoma. Surgical treatment was performed. Urinary abnormality occurred 11 years after surgery, along with urinary incontinence, nocturnal enuresis, urinary frequency, and urinary urgency. A further surgery was performed because magnetic resonance imaging showed spinal cord lipoma and recurrence of TCS.

    Case 3 was a 5-year-old girl with abnormal hair growth in the lumbosacral region at birth. Physical examination revealed a partial spinal canal defect. Because the hair growth increased, magnetic resonance imaging examination was performed. The results revealed a tethered spinal cord and split cord malformation (Type I). Surgery was performed to correct the malformation.

    aCGH analysis

    aCGH is a specific array-based genomic hybridization method that uses different fluorescent dyes to label DNA from patients and controls, to identify differences between the two groups (Sealfon and Chu, 2011; Brady and Vermeesch, 2012). By comparing the ratio of two different fluorescence signals at each target spot in the microarray, CNVs are detected in specific sequences or genes between two genomes (Gijsbers et al., 2011; Shoukier et al., 2013).

    Total DNA was extracted from peripheral whole blood using a commercially available DNA-isolation kit (BioChain Inc., Beijing, China), according to the manufacturer’s protocol. For each aCGH experiment, purified DNA and normal sex-matched DNA (1 μg each; Promega, Madison, WI, USA) were digested with AluI and RsaI (10 U each; Promega), and differentially labelled with cyanine-5 and cyanine-3 fluorescent dyes using a Genomic DNA Enzymatic Labeling Kit (Agilent, Santa Clara, CA, USA). aCGH analysis was performed using the Agilent 8 × 60K commercial array. This platform contains 60-mer oligonucleotide probes spanning the entire human genome with an overall mean probe spacing of 50 kb. After hybridization, arrays were scanned using a dual-laser scanner (Agilent), and images extracted and analyzed using the Feature Extraction (Agilent) and Workbench genomics software, respectively. Changes in test DNA copy number at specific loci were considered only if they were <-0.38 (deletion) or > 0.38 (amplification) of the log2 ratio values from at least five consecutive probes.

    TCS-related CNV analysis

    Removal of polymorphic CNVs using the Database of Genomic Variants

    CNV fragments were scanned against the Database of Genomic Variants (Iafrate et al., 2004; Wong et al., 2007). CNVs that completely matched those in the database were removed as they represent common polymorphic variants present in the normal population. Partially overlapping (< 40%) CNVs were considered non-polymorphic and retained for further analysis. In addition, discontinuous polymorphic fragments appearing within CNV sequences (total fragment length was shorter than half-lengths of detected CNVs) were not treated as common polymorphisms and were also retained for further analysis.

    Comparison of non-polymorphic CNVs with DECIPHER

    The non-polymorphic CNV fragments selected above were searched against the DECIPHER database (Firth et al., 2009). Cases were identified with CNVs similar to those reported in previously tested samples (partial overlap >60%) or containing documented CNVs. Additionally, chromosomal abnormalities, related phenotypes, and syndromes associated with these cases were identified.

    Table 1 Array-comparative genome hybridization analysis of TCS patients and controls

    Table 2 DECIPHER search results for non-polymorphic copy number variations (CNVs)

    Table 3 Syndromes and clinical phenotypes linked to non-polymorphic copy number variations

    Table 4 Genes contained in non-polymorphic copy number variations

    Figure 1 Chromosome maps of the three patients with tethered spinal cord syndrome.

    Table 5 Enrichment results for gene ontology (GO) analysis

    Gene function enrichment analysis

    Entire genes incorporated in non-polymorphic CNVs were identified using the University of California, Santa Cruz (UCSC) Genome Browser database (http://genome.ucsc.edu/). Gene function enrichment analyses were performed for the genes identified, including Gene Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway (http://www.genome.jp/kegg/) analyses.

    Enrichment P-values for each GO term or KEGG pathway were calculated using the hyper-geometric distribution method. P-values were then corrected for multiple hypotheses testing using the false discovery rate method. A P-value of 0.05 was set as the threshold value for significant gene enrichment for each GO term or KEGG pathway.

    Results

    Gene micro-repeat fragment location in TCS patients

    Results of the aCGH analysis for all three patients and two parents are shown in Table 1. Three micro-repeat fragments were detected in DNA isolated from Patient 1. A micro-deletion fragment was detected in Patient 2, while a micro-deletion and micro-repeat were detected in Patient 3. The father of Patient 1 had a normal karyotype, whereas the mother’s chromosome map showed micro-deletion and micro-repeat fragments. The micro-deletion fragment in Patient 2 and micro-repeat fragment in Patient 3 were located in the same region: 15q11.1q11.2 (Figure 1).

    Database searching of CNVs

    The eight identified CNVs were searched against the Database of Genomic Variants. The results showed that four CNVs were normal chromosomal polymorphisms, specifically, the 1p21.2 micro-repeat in Patient 1, 2p11.2 micro-deletion in Patient 3, and 7q11.22q11.23 micro-deletion and 19p12 micro-repeat in the mother of Patient 1.

    Investigation of the other four non-polymorphic CNVsin DECIPHER revealed eight specific CNVs in these regions (Table 2). Non-polymorphic CNVs in Patients 2 and 3 (ID 4 and 6 in Table 1) shared the same chromosomal initiation site, indicating that multiple CNVs occur in the same location. Further analyses revealed that these CNVs are associated with two syndromes (Angelman and Prader-Willi) and one phenotype (microcephaly) (Table 3).

    Table 6 Gene enrichment analysis

    Gene function enrichment analysis

    Within the four non-polymorphic CNVs regions, 13 genes were identified by the UCSC Genome Browser (Table 4). Function enrichment analysis of GO terms and KEGG pathways were performed for these genes. The results included a number of biological functions (e.g., gamete generation), molecular functions (e.g., ubiquitin-protein ligase activity), two cellular components (mitochondrial inner membrane and integral membrane component), as well as eight KEGG pathways, including viral myocarditis, cardiac muscle contraction, Parkinson’s disease, oxidative phosphorylation, ubiquitin-mediated proteolysis, Alzheimer’s disease, Huntington’s disease, and olfactory transduction. From these results, we found that the COX8C gene is closely related to neural system diseases such as Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease (Tables 5, 6).

    Discussion

    Advantages of using aCGH for detection of rare chromosomal micro-variations

    Chromosomal sub-microscopic variations are strongly associated with human disease (Feuk et al., 2006). In clinical settings, the definite diagnosis of several diseases cannot be achieved using existing techniques. Consequently, some rare syndromes are labelled idiopathic or unexplained. Most of these syndromes are due to genomic imbalances created by chromosomal micro-variations such as micro-deletions and micro-repeats (D’Angelo et al., 2014). The aCGH approach efficiently detects chromosomal micro-aberrations and aids elucidation of idiopathic or unexplained diseases.

    Significance and limitations of aCGH analysis

    The main objective of this study was to identify non-random CNVs and evaluate their association with TCS. The main questions regarding the CNVs we identified are: (1) whether the CNVs are inherited; (2) whether they are found in the normal population; (3) whether their lengths are sufficient to contain genes with functional annotations; (4) whether they are linked to diseases in DECIPHER; and (5) whether any are unreported, unidentified, or novel. Although the Database of Genomic Variants and DECIPHER, which are globally representative databases, were used to determine the type of CNVs identified, ethnic differences are inevitable when using international databases.

    Diseases similar to TCS that are associated with COX8C

    CNVs similar to the ones we detected are found in the DECIPHER database. These CNVs are associated with Angelman and Prader-Willi syndromes, and microcephaly. All of these disorders involve significant neural abnormalities (Mabb et al., 2011; Mahmood et al., 2011; Cassidy et al., 2012). Furthermore, gene function analysis indicated a close association between COX8C and certain diseases including Parkinson’s, Alzheimer’s, and Huntington’s diseases, all of which are typical nervous system diseases (Bassil and Mollaei, 2012; Pogledi? and Relja, 2012; Gazewood et al., 2013). By comparing the CNVs from Patient 1 with those identified in her parents, we excluded the possibility of TCS being hereditary. Thus, we propose that the condition may be acquired during neural development.

    Conclusion

    In this study, we used high-resolution aCGH to identify pathogenic CNVs in samples from patients with typical TCS. Our findings suggest an association between certain CNVs and nervous system disease. Our data may be used in the future as a reference for the integration of available data, or for further studies with larger sample sizes. Ours study demonstrates specific transformation research, and shows that a molecular method can be used to clinically diagnose TCS. Our findings may help to shed new light on the pathogenesis of TCS.

    Acknowledgments: We are very grateful to the staffs of iGene-Tech Biotechnology Co., Ltd. in China for some of the experiment operations.

    Author contributions: QJZ and SCB performed the experiment. CC, BZT and LKW collected patients, and conducted clinical communication and treatment. SL and LY provided technical and capital supports. QJZ and XYH analyzed and explained data. AJS and XYH served as principle investigators. All authors approved the final version of the paper.

    Conflicts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded and stringently reviewed by international expert reviewers.

    References

    Atta CA, Fiest KM, Frolkis AD, Jette N, Pringsheim T, St Germaine-Smith C, Rajapakse T, Kaplan GG, Metcalfe A (2016) Global birth prevalence of spina bifida by folic acid fortification status: A systematic review and meta-analysis. Am J Public Health 106:e24-34.

    Au KS, Ashley-Koch A, Northrup H (2010) Epidemiologic and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev 16:6-15.

    Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F (2012) Novel VANGL1 gene mutations in 144 Slovakian, Romanian and German patients with neural tube defects. Mol Syndromol 3:76-81.

    Bassil N, Mollaei C (2012) Alzheimer’s dementia: a brief review. J Med Liban 60:192-199.

    Bassuk AG, Kibar Z (2009) Genetic basis of neural tube defects. Semin Pediatr Neurol 16:101-110.

    Bassuk AG, Muthuswamy LB, Boland R, Smith TL, Hulstrand AM, Northrup H, Hakeman M, Dierdorff JM, Yung CK, Long A, Brouillette RB, Au KS, Gurnett C, Houston DW, Cornell RA, Manak JR (2013) Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene. Hum Mol Genet 22:1097-1111.

    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32:336-343.

    Cassidy SB, Schwartz S, Miller JL, Driscoll DJ (2012) Prader-Willi syndrome. Genet Med 14:10-26.

    Cearns MD, Escuin S, Alexandre P, Greene ND, Copp AJ (2016) Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 229:63-74.

    Chen X, Shen Y, Gao Y, Zhao H, Sheng X, Zou J, Lip V, Xie H, Guo J, Shao H, Bao Y, Shen J, Niu B, Gusella JF, Wu BL, Zhang T (2013) Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One 8:e54492.

    Costa-Lima MA, Meneses HN, El-Jaick KB, Amorim MR, Castilla EE, Orioli IM (2008) No association of the polyhistidine tract polymorphism of the ZIC2 gene with neural tube defects in a South American (ECLAMC) population. Mol Med Rep 1:443-446.

    D’Angelo CS, Varela MC, de Castro CI, Kim CA, Bertola DR, Louren?o CM, Perez ABA, Koiffmann CP (2014) Investigation of selected genomic deletions and duplications in a cohort of 338 patients presenting with syndromic obesity by multiplex ligation-dependent probe amplification using synthetic probes. Mol Cytogenet 7:75.

    Feuchtbaum LB, Currier RJ, Riggle S, Roberson M, Lorey FW, Cunningham GC (1999) Neural tube defect prevalence in California (1990-1994): eliciting patterns by type of defect and maternal race/ ethnicity. Genet Test 3:265-272.

    Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15:R57-66.

    Filippidis AS, Kalani MY, Theodore N, Rekate HL (2010) Spinal cord traction, vascular compromise, hypoxia, and metabolic derangements in the pathophysiology of tethered cord syndrome. Neurosurg Focus 29:E9.

    Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, Vooren SV, Moreau Y, Pettett RM, Carter NP (2009) DECIPHER: Database of chromosomal imbalance and phenotype in humans using ensembl resources. Am J Hum Genet 84:524-533.

    Gazewood JD, Richards DR, Clebak K (2013) Parkinson disease: an update. Am Fam Physician 87:267-273.

    Gijsbers AC, Schoumans J, Ruivenkamp CA (2011) Interpretation of array comparative genome hybridization data: a major challenge. Cytogenet Genome Res 135:222-227.

    Grinberg I, Millen KJ (2005) The ZIC gene family in development and disease. Clin Genet 67:290-296.

    Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW, Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949-951.

    Joó JG (2009a) Recent perspectives on the development of the central nervous system and the genetic background of neural tube defects. Orv Hetil 150:873-882.

    Joó JG (2009b) Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 9:281-293.

    Kallioniemi A (2008) CGH microarrays and cancer. Curr Opin Biotechnol 19:36-40.

    Khoshnood B, Loane M, de Walle H, Arriola L, Addor MC, Barisic I, Beres J, Bianchi F, Dias C, Draper E, Garne E, Gatt M, Haeusler M, Klungsoyr K, Latos-Bielenska A, Lynch C, McDonnell B, Nelen V, Neville AJ, O’Mahony MT, et al. (2015) Long term trends in prevalence of neural tube defects in Europe: population based study. BMJ 351:h5949.

    Laharwal MA, Sarmast AH, Ramzan AU, Wani AA, Malik NK, Arif SH, Rizvi M (2016) Epidemiology of the neural tube defects in Kashmir Valley. Surg Neurol Int 7:35.

    Mabb AM, Judson MC, Zylka MJ, Philpot BD (2011) Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci 34:293-303.

    Mahmood S, Ahmad W, Hassan MJ (2011) Autosomal recessive primary microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum. Orphanet J Rare Dis 6:39-39.

    Molloy AM, Brody LC, Mills JL, Scott JM, Kirke PN (2009) The search for genetic polymorphisms in the homocysteine/folate pathway that contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 85:285-294.

    Mosse YP, Greshock J, Weber BL, Maris JM (2005) Measurement and relevance of neuroblastoma DNA copy number changes in the post-genome era. Cancer Lett 228:83-90.

    Payne J (2007) Tethered spinal cord syndrome. BMJ 335:42-43.

    Pogledi? I, Relja M (2012) Huntington’s disease. Lijec Vjesn 134:346-350.

    Saberi A, Shariati G, Hamid M, Galehdari H, Abdorasouli N (2014) Wolf-Hirschhorn syndrome: a case with normal karyotype, demonstrated by array CGH (aCGH). Arch Iran Med 17:642-644.

    Sealfon SC, Chu TT (2011) RNA and DNA Microarrays. Methods Mol Biol 671:3-34.

    Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E (2015) Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 24:3893.

    Shoukier M, Klein N, Auber B, Wickert J, Schr?der J, Zoll B, Burfeind P, Bartels I, Alsat EA, Lingen M, Grzmil P, Schulze S, Keyser J, Weise D, Borchers M, Hobbiebrunken E, R?bl M, G?rtner J, Brockmann K, Zirn B (2013) Array CGH in patients with developmental delay or intellectual disability: are there phenotypic clues to pathogenic copy number variants? Clin Genet 83:53-65.

    Sireteanu A, Covic M, Gorduza EV (2012) Array CGH: technical considerations and applications. Rev Med Chir Soc Med Nat Iasi 116:545-551.

    Tran S, Wang L, Le J, Guan J, Wu L, Zou J, Wang Z, Wang J, Wang F, Chen X, Cai L, Lu X, Zhao H, Guo J, Bao Y, Zheng X, Zhang T (2012) Altered methylation of the DNA repair gene MGMT is associated with neural tube defects. J Mol Neurosci 47:42-51.

    Tun?bilek E, Boduro lu K, Alika ifo lu M (1999) Neural tube defects in Turkey: prevalence, distribution and risk factors. Turk J Pediatr 41:299-305.

    van der Put NM, van Straaten HW, Trijbels FJ, Blom HJ (2001) Folate, homocysteine and neural tube defects: an overview. Exp Biol Med (Maywood) 226:243-270.

    Vissers Lisenka E, de Vries Bert B, Osoegawa K, Janssen Irene M, Feuth T, Choy Chik O, Straatman H, van der Vliet W, Huys Erik H, van Rijk A, Smeets D, van Ravenswaaij-Arts Conny M, Knoers Nine V, van der Burgt I, de Jong Pieter J, Brunner Han G, van Kessel Ad G, Schoenmakers Eric F, Veltman Joris A (2003) Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 73:1261-1270.

    Wen S, Lu W, Zhu H, Yang W, Shaw GM, Lammer EJ, Islam A, Finnell RH (2009) Genetic polymorphisms in the thioredoxin 2 (TXN2) gene and risk for spina bifida. Am J Med Genet A 149A:155-160.

    Wong Kendy K, deLeeuw Ronald J, Dosanjh Nirpjit S, Kimm Lindsey R, Cheng Z, Horsman Douglas E, MacAulay C, Ng Raymond T, Brown Carolyn J, Eichler Evan E, Lam Wan L (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91-104.

    Zhao J, Guan T, Wang J, Xiang Q, Wang M, Wang X, Guan Z, Xie Q, Niu B, Zhang T (2013) Influence of the antifolate drug Methotrexate on the development of murine neural tube defects and genomic instability. J Appl Toxicol 33:915-923.

    Copyedited by James R, Frenchman B, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    10.4103/1673-5374.189200

    *Correspondence to:

    在现免费观看毛片| 久久久久久久久久久免费av| 亚洲精品亚洲一区二区| 久久久久久国产a免费观看| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 美女脱内裤让男人舔精品视频 | 日韩强制内射视频| 男女视频在线观看网站免费| 国产精品蜜桃在线观看 | 亚洲国产欧美在线一区| 在线免费十八禁| 日本一本二区三区精品| 九九在线视频观看精品| 日韩欧美三级三区| 麻豆国产av国片精品| 国产精品永久免费网站| 国产精品久久久久久久电影| 99热网站在线观看| 美女cb高潮喷水在线观看| 日本在线视频免费播放| 夫妻性生交免费视频一级片| 丰满人妻一区二区三区视频av| 色播亚洲综合网| 免费看日本二区| 国产精品人妻久久久久久| 国产精品综合久久久久久久免费| 国产精品三级大全| 久99久视频精品免费| 成人综合一区亚洲| 又粗又爽又猛毛片免费看| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 国产日韩欧美在线精品| 国产爱豆传媒在线观看| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| av在线亚洲专区| 久久99精品国语久久久| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 少妇高潮的动态图| 高清日韩中文字幕在线| 高清毛片免费观看视频网站| 国产成人精品一,二区 | 91精品国产九色| 成人永久免费在线观看视频| 色噜噜av男人的天堂激情| 亚洲七黄色美女视频| 特大巨黑吊av在线直播| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| 午夜爱爱视频在线播放| 18+在线观看网站| 亚洲激情五月婷婷啪啪| 激情 狠狠 欧美| 国产真实乱freesex| 成人综合一区亚洲| 国产亚洲5aaaaa淫片| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 亚洲最大成人中文| 少妇丰满av| 91久久精品国产一区二区成人| 如何舔出高潮| 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 欧美区成人在线视频| 亚洲av男天堂| 最近的中文字幕免费完整| 亚洲人成网站在线观看播放| av免费观看日本| 亚洲七黄色美女视频| 一卡2卡三卡四卡精品乱码亚洲| www.av在线官网国产| 26uuu在线亚洲综合色| 久久韩国三级中文字幕| 国产又黄又爽又无遮挡在线| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 精品欧美国产一区二区三| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕 | .国产精品久久| 亚洲欧洲国产日韩| 久久久色成人| 中国美白少妇内射xxxbb| 日日啪夜夜撸| 国产亚洲91精品色在线| 欧美一区二区国产精品久久精品| 国产极品精品免费视频能看的| 18禁黄网站禁片免费观看直播| 黑人高潮一二区| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 九九爱精品视频在线观看| 欧美日本视频| 人妻夜夜爽99麻豆av| 99热只有精品国产| 在线观看午夜福利视频| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区四那| 边亲边吃奶的免费视频| 国产一区亚洲一区在线观看| 中文字幕熟女人妻在线| 能在线免费观看的黄片| 精品久久久噜噜| 国产精品乱码一区二三区的特点| 熟女电影av网| 国产午夜精品久久久久久一区二区三区| 91久久精品国产一区二区三区| 欧美色欧美亚洲另类二区| 伦精品一区二区三区| 精品久久久久久久久亚洲| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| 亚洲精品日韩在线中文字幕 | 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 欧美在线一区亚洲| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 大又大粗又爽又黄少妇毛片口| 此物有八面人人有两片| 国产成人a∨麻豆精品| 国产在线精品亚洲第一网站| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 97在线视频观看| 又爽又黄无遮挡网站| h日本视频在线播放| 丰满人妻一区二区三区视频av| 能在线免费观看的黄片| 人人妻人人澡人人爽人人夜夜 | 免费av不卡在线播放| 在线免费观看的www视频| 成人性生交大片免费视频hd| 国产成人一区二区在线| 日韩欧美三级三区| 中文字幕精品亚洲无线码一区| 国产午夜精品论理片| 男女下面进入的视频免费午夜| 一级毛片我不卡| 日本在线视频免费播放| 亚洲欧美日韩东京热| 天天躁夜夜躁狠狠久久av| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 18+在线观看网站| 26uuu在线亚洲综合色| 国产亚洲精品久久久com| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 一进一出抽搐动态| 一级黄色大片毛片| 激情 狠狠 欧美| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品乱码久久久久久按摩| 日韩成人av中文字幕在线观看| 亚洲第一电影网av| 2022亚洲国产成人精品| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 美女内射精品一级片tv| 国产午夜精品一二区理论片| 国产伦精品一区二区三区视频9| 精品欧美国产一区二区三| 91狼人影院| 国产精品久久久久久精品电影| 国产淫片久久久久久久久| 特级一级黄色大片| 亚州av有码| 国产日本99.免费观看| 国产精品国产高清国产av| 国产成人精品婷婷| 精品99又大又爽又粗少妇毛片| 三级国产精品欧美在线观看| 日韩av在线大香蕉| 啦啦啦观看免费观看视频高清| 国产精品福利在线免费观看| 久久午夜亚洲精品久久| 国产白丝娇喘喷水9色精品| 久久人人爽人人爽人人片va| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 国产淫片久久久久久久久| 伊人久久精品亚洲午夜| 男女边吃奶边做爰视频| 日韩欧美国产在线观看| 国产午夜精品久久久久久一区二区三区| 丰满乱子伦码专区| 69av精品久久久久久| 国产私拍福利视频在线观看| 久久韩国三级中文字幕| 午夜福利成人在线免费观看| 特级一级黄色大片| 亚洲精品乱码久久久久久按摩| 国产一区亚洲一区在线观看| 日韩欧美精品免费久久| 午夜久久久久精精品| 此物有八面人人有两片| 一本一本综合久久| 免费av不卡在线播放| 91久久精品国产一区二区三区| 色尼玛亚洲综合影院| 亚洲精品亚洲一区二区| 国产亚洲av嫩草精品影院| 亚洲无线观看免费| 色哟哟·www| 内地一区二区视频在线| 久久人人精品亚洲av| 久久国内精品自在自线图片| 人人妻人人澡人人爽人人夜夜 | 精品不卡国产一区二区三区| 嫩草影院新地址| 国产探花在线观看一区二区| 99热网站在线观看| 成熟少妇高潮喷水视频| 自拍偷自拍亚洲精品老妇| 美女内射精品一级片tv| 亚洲成人av在线免费| 麻豆国产97在线/欧美| 女的被弄到高潮叫床怎么办| 国产三级中文精品| 1024手机看黄色片| 在线a可以看的网站| 国产一区二区三区在线臀色熟女| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频 | 嫩草影院入口| 中出人妻视频一区二区| 搞女人的毛片| 国内揄拍国产精品人妻在线| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 午夜视频国产福利| 亚洲精品自拍成人| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 内射极品少妇av片p| 国产不卡一卡二| 亚洲高清免费不卡视频| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 国产精品国产三级国产av玫瑰| 给我免费播放毛片高清在线观看| 日本一本二区三区精品| 男的添女的下面高潮视频| 亚洲精品国产成人久久av| a级毛色黄片| 亚洲精华国产精华液的使用体验 | 美女高潮的动态| 日韩国内少妇激情av| 亚洲精品成人久久久久久| 成人性生交大片免费视频hd| 不卡一级毛片| 亚洲欧美清纯卡通| 在线a可以看的网站| 日本免费a在线| 亚洲丝袜综合中文字幕| 美女黄网站色视频| 国产av一区在线观看免费| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 美女脱内裤让男人舔精品视频 | 国产成人午夜福利电影在线观看| 变态另类丝袜制服| 亚洲在线自拍视频| 国产精品一及| 精品久久久久久久久久久久久| 深夜a级毛片| 国产黄色视频一区二区在线观看 | 爱豆传媒免费全集在线观看| 国产久久久一区二区三区| 久久99蜜桃精品久久| 国产真实乱freesex| 欧美区成人在线视频| 两个人视频免费观看高清| 97超碰精品成人国产| 国产成人精品婷婷| 国产色婷婷99| 色吧在线观看| 老师上课跳d突然被开到最大视频| 欧美日韩精品成人综合77777| 热99re8久久精品国产| 亚洲第一区二区三区不卡| 夜夜爽天天搞| 熟妇人妻久久中文字幕3abv| 噜噜噜噜噜久久久久久91| 成人综合一区亚洲| 国产成人精品婷婷| 乱码一卡2卡4卡精品| 国内揄拍国产精品人妻在线| 亚洲久久久久久中文字幕| 国产av在哪里看| 成人av在线播放网站| 国产精品久久久久久久电影| 一本久久精品| 国产亚洲精品久久久久久毛片| 两个人视频免费观看高清| 中国美白少妇内射xxxbb| 久久久久久国产a免费观看| 亚洲欧美日韩高清在线视频| 国产成年人精品一区二区| 高清在线视频一区二区三区 | АⅤ资源中文在线天堂| 国产色婷婷99| 长腿黑丝高跟| 美女被艹到高潮喷水动态| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久久久免| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类| 亚洲真实伦在线观看| 人妻少妇偷人精品九色| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久久久毛片| 国产成人a∨麻豆精品| 黄色配什么色好看| 成人午夜高清在线视频| 色综合色国产| 欧美成人a在线观看| 黄色一级大片看看| av视频在线观看入口| 久久久久久久久久成人| 国产黄色小视频在线观看| 日韩成人伦理影院| 欧美日韩乱码在线| 九草在线视频观看| 69av精品久久久久久| 亚洲最大成人中文| 少妇猛男粗大的猛烈进出视频 | 在线免费十八禁| 色哟哟哟哟哟哟| 国产亚洲精品久久久com| 全区人妻精品视频| 美女cb高潮喷水在线观看| 九九在线视频观看精品| 给我免费播放毛片高清在线观看| 国产精品一区二区性色av| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 成人无遮挡网站| 免费av不卡在线播放| 毛片一级片免费看久久久久| 欧美区成人在线视频| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 欧美色视频一区免费| 国产午夜福利久久久久久| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 1000部很黄的大片| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 国产美女午夜福利| av天堂在线播放| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| a级毛色黄片| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 26uuu在线亚洲综合色| 精品久久久久久成人av| 99久久精品热视频| 国产成人a区在线观看| 久久久久久久久久黄片| 欧美最黄视频在线播放免费| 丰满乱子伦码专区| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 少妇高潮的动态图| 亚洲va在线va天堂va国产| 亚洲中文字幕日韩| 简卡轻食公司| 日产精品乱码卡一卡2卡三| 桃色一区二区三区在线观看| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 99久久成人亚洲精品观看| 亚洲av.av天堂| 老女人水多毛片| 精品午夜福利在线看| 精品国内亚洲2022精品成人| 激情 狠狠 欧美| 成人永久免费在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 日日摸夜夜添夜夜爱| 老熟妇乱子伦视频在线观看| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 日本欧美国产在线视频| 久久精品人妻少妇| 免费看av在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头 嗯啊视频| 免费电影在线观看免费观看| 精品国内亚洲2022精品成人| 中国国产av一级| 欧美日韩国产亚洲二区| 免费搜索国产男女视频| 亚洲国产高清在线一区二区三| 1024手机看黄色片| 国产极品天堂在线| 中文字幕制服av| 久久婷婷人人爽人人干人人爱| 国产综合懂色| 亚洲国产欧美人成| 国产探花极品一区二区| 在线观看午夜福利视频| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 午夜福利成人在线免费观看| 在线免费观看的www视频| 成人一区二区视频在线观看| 成人漫画全彩无遮挡| 日韩,欧美,国产一区二区三区 | 国产乱人偷精品视频| 国产一区亚洲一区在线观看| 国产成人午夜福利电影在线观看| 岛国在线免费视频观看| 熟女电影av网| 久久精品夜色国产| 亚洲精品成人久久久久久| 久久精品国产鲁丝片午夜精品| 亚州av有码| a级一级毛片免费在线观看| 一级二级三级毛片免费看| 亚洲欧美日韩东京热| 97热精品久久久久久| 精品一区二区三区人妻视频| 久久99热6这里只有精品| 色噜噜av男人的天堂激情| 乱码一卡2卡4卡精品| 有码 亚洲区| 国产伦一二天堂av在线观看| 亚洲五月天丁香| av.在线天堂| 国产美女午夜福利| 精品久久久久久久久亚洲| av黄色大香蕉| 成年女人永久免费观看视频| 插阴视频在线观看视频| 国产极品精品免费视频能看的| 日韩 亚洲 欧美在线| 亚洲乱码一区二区免费版| 欧美成人免费av一区二区三区| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 亚洲av熟女| av.在线天堂| 美女 人体艺术 gogo| 国产真实伦视频高清在线观看| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 麻豆成人av视频| 嫩草影院入口| 久久热精品热| 国产v大片淫在线免费观看| 美女国产视频在线观看| 波多野结衣巨乳人妻| 最近中文字幕高清免费大全6| 在线a可以看的网站| 国产精品一区www在线观看| 深夜a级毛片| 亚洲天堂国产精品一区在线| 日韩强制内射视频| 国产精品1区2区在线观看.| 麻豆成人午夜福利视频| 少妇人妻一区二区三区视频| 级片在线观看| 中文字幕熟女人妻在线| 欧美最新免费一区二区三区| 能在线免费观看的黄片| 26uuu在线亚洲综合色| 精品久久久噜噜| 一级二级三级毛片免费看| 夫妻性生交免费视频一级片| 国产黄色视频一区二区在线观看 | 国产成人a∨麻豆精品| 人妻夜夜爽99麻豆av| 又爽又黄无遮挡网站| 国产精品,欧美在线| kizo精华| 午夜老司机福利剧场| 久久精品人妻少妇| 高清毛片免费看| 色哟哟·www| 欧美激情久久久久久爽电影| 久久久国产成人免费| 美女大奶头视频| 午夜久久久久精精品| 国产精品爽爽va在线观看网站| 少妇高潮的动态图| 熟女人妻精品中文字幕| 一区福利在线观看| 日韩一区二区视频免费看| av在线播放精品| 亚洲中文字幕一区二区三区有码在线看| 青春草国产在线视频 | 校园春色视频在线观看| 亚洲av成人av| 伊人久久精品亚洲午夜| 欧美色视频一区免费| 97人妻精品一区二区三区麻豆| 观看免费一级毛片| 我要搜黄色片| 不卡一级毛片| 晚上一个人看的免费电影| 中文精品一卡2卡3卡4更新| 一个人看视频在线观看www免费| 亚洲va在线va天堂va国产| av在线观看视频网站免费| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院精品99| 日本成人三级电影网站| 一级黄片播放器| 美女国产视频在线观看| 中国美白少妇内射xxxbb| 一本久久精品| 欧美日韩在线观看h| 国产综合懂色| 少妇裸体淫交视频免费看高清| 你懂的网址亚洲精品在线观看 | 欧美激情国产日韩精品一区| 日本欧美国产在线视频| 欧美日韩精品成人综合77777| 精品国内亚洲2022精品成人| 亚洲国产精品成人综合色| 日韩欧美 国产精品| 精品久久久久久成人av| 九九热线精品视视频播放| 在线a可以看的网站| 青春草国产在线视频 | 亚洲国产精品久久男人天堂| 国产精品日韩av在线免费观看| 国产黄片美女视频| 国产中年淑女户外野战色| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 亚洲精品影视一区二区三区av| 日韩一本色道免费dvd| 国产av一区在线观看免费| 欧美性猛交╳xxx乱大交人| 亚洲国产高清在线一区二区三| 久久精品国产99精品国产亚洲性色| 亚洲自偷自拍三级| 国产精品一区二区三区四区免费观看| 可以在线观看的亚洲视频| 九九久久精品国产亚洲av麻豆| 国产亚洲精品av在线| 99久久精品国产国产毛片| 97人妻精品一区二区三区麻豆| 免费人成在线观看视频色| 毛片一级片免费看久久久久| av天堂在线播放| 亚洲av成人精品一区久久| 一夜夜www| 在线观看av片永久免费下载| av黄色大香蕉| 校园人妻丝袜中文字幕| 国产爱豆传媒在线观看| av黄色大香蕉| 欧美性感艳星| av在线蜜桃| 国产精品久久电影中文字幕| 成人特级av手机在线观看| 在线天堂最新版资源| 如何舔出高潮| 亚洲无线在线观看| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 亚洲国产精品sss在线观看| 国产av麻豆久久久久久久| 亚洲五月天丁香| 中文欧美无线码| 欧美最黄视频在线播放免费| 精品久久久久久久末码| 久久人人精品亚洲av| 欧美最黄视频在线播放免费| 久久午夜福利片| 日韩欧美精品v在线| 99热精品在线国产| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 成人一区二区视频在线观看| 一区二区三区免费毛片| 精品人妻视频免费看| 可以在线观看毛片的网站| 一级毛片我不卡| 日韩中字成人| 18+在线观看网站| 男人和女人高潮做爰伦理| 亚洲美女视频黄频| 国产精品99久久久久久久久| 国产精品一区www在线观看| 免费电影在线观看免费观看| 欧美激情久久久久久爽电影| 久久久久性生活片|