• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PMS-Sorting: A New Sorting Algorithm Based on Similarity

    2019-04-29 03:21:36HongbinWangLiankeZhouGuodongZhaoNianbinWangJianguoSunYueZhengandLeiChen
    Computers Materials&Continua 2019年4期

    Hongbin Wang, Lianke Zhou, Guodong Zhao , , Nianbin Wang, Jianguo Sun,Yue Zheng and Lei Chen

    Abstract: Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm, it is mainly suitable for the high duplication of search results, for the independent search results, the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive, but position relationship cannot fully represent the correlation changes. aimed at this drawback, the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm, firstly the position score of the returned results is standardized processing, and the similarity retrieval word string with the query results is combined into the algorithm, the similarity calculation method is also improved, through the experiment, the improved algorithm is superior to traditional sorting algorithm.

    Keywords: Meta search engine, result sorting, query similarity, Borda sorting algorithm,position relationship.

    1 Introduction

    Meta search engine [Zhang, Yu, Liao et al. (2004); Smyth and Boydell (2010)] is aimed to increase the precision and recall rate of in-dependent search engine, so there is no need to set data base for search and retrieval mechanism [Yamamoto, Fujii, Toyofuku et al.(2001); Yang (2005); Chen and Xu (2016)]. It achieve its search behavior by integrating a search engine that best meets user needs in accordance with the users’ interest or excellent degree of search engines, and its search interface is the same as the tradition-al search engines. For the search results returned, the Meta search engine will integrate a mechanism in accordance with results to remove-duplicate web pages and complete mix,then sort them according to a certain algorithm, finally return to user a process. Therefore,the ranking of results for the Meta search engine is of vital importance. There are a lot of researches for algorithm of ranking results nowadays. In this paper, the author studies and makes improvement on the classic Borda ranking algorithm. As a traditional ranking algorithm in a weighed way, Borda ranking algorithm is first applied in vote [Yang(2005); Yong and Zulin (2011)], which is a method for voters to choose candidates.Because of its good availability, it has been widely used.

    2 Traditional borda sorting algorithm model

    The traditional Borda algorithm [Cho, Brand, Bordawekar et al. (2015)] is a kind of improvement based on the weighted sorting algorithm. The algorithm is described as follows:

    We define the set of tested search engines in the meta search engine as S={s1,s2,…,sn}.R={r1,r2,...,rm} is the set for all query results to query word q. Each query result rkis composed of four parts: URL, title, abstract, relevance score, which are represented by array assi_Url[k],si_Title[k],si_Abs[k],si_Score[k] on condition of k=1,2,… ,m,i=1,2,…,n.

    The Borda sorting algorithm [Katsirelos, Walsh, Davies et al. (2011)] in meta search engine [Lawrence and Giles (1998)] is voted by the results returned by tested search engines. It establishes the preference relationship in position relationship among tested search engines according to the returned results after inputting query word [García-Lapresta and Martínez-Panero (2002)]. If the result is independent, we regard related score in other search engines as zero. Finally we put all the scores of each result to be summed to obtain the final score, and sort it in descending order. The mathematical model for the algorithm is as follows: the number of tested search engine is n, which means S={s1,s2,…,sn}; the set of query results is R={r1,r2,...,rm}. For Sk, we build matrix of preference relationship to Rkas Eq. (1).

    when riis ranked before rjby k,=1; otherwise it is 0. The score for ri from Sk is shown in Eq. (2).

    so the matrix of all query results from Rk(k=1,2,…,n) is shown in Eq. (3).

    the final score is shown in Eq. (4).

    sorting Borda(ri) according to relevance score of Borda and return to users.

    3 PMS-sorting

    The PMS-sorting algorithm based on the query result position, multiplicity and query similarity as is proposed in this paper, not only considers the relevancy and repeated read information of the query result position, but also combines the similarity of the query term and query result, which improves considerably the result of independent searching[Ping (2003)].

    Besides, we plan to use global similarity for computing the similarity between query term and query result, because the methods of relevance algorithm of each independent search engine are not public, or are to be compared directly. In addition, on the problem of malpractice of the current global relevance algorithm, the similarity algorithm on the titles and abstracts of the return result would be more effective and accurate.

    The research in the paper is about one user’s query string q, the score of the query result can be ultimately represented as a Borda score, and can be sorted and showed to users.We are going to make discussions on the algorithms in the following part.

    3.1 The position standardization of the query result in search engine

    Result list of independent search engines is sorted according to relevance of search words,therefore, the position of results can reflect its relevance with the query word enormously.Under common cases, the first ones of the results are most relevant to the users, making it very necessary to consider the position information of independent search engine. To make the position score more accurate, we improved the algorithm as follows.

    N search engine members S1,S2,…,Snsearch a certain query word q, and m results are returned by search engine Sj, and the relevance of the result rklocated in k and the users query position is represented by pos(q,Sj,rk), which is shown in Eq. (5).

    where pos(q,Sj,rk)∈[0,1], if the query result rk is the first result in the result collection of some search engine, then the score of pos(q,Sj,rk) is 1, which means that the first result of all member search engines are equally important. But if the numbers of results list documents that returned are different, the smaller is the number, the higher is the score. It means that having a good position in a list that has more results is more valuable than in a list that has fewer results. Thus the relationship between query results and query words is unified, i.e., the latter the position is, the smaller pos(q,Sj,rk) is, the fewer its relationship with the query word is, and the less the influence on the sorting.

    3.2 The global similarity between query results and user query

    Suppose query string q has n feature items t1,t2,…,tnand two documents d1,d2, if a certain feature occurred n times in d1while other feature items haven’t occurred, but in d2, n feature items have occurred once, in this case, although the word frequency is the same in the two documents, d2is obviously more relevant and has the most comprehensive covered features. For example, the query string “central People’s Government” divides q into three feature items, t1= “Central”,t2= “People’s”,t3=“Government” , if feature item t1= “Central” occurred many times in document one with other features not occurring, while all the three features occurred once in document two, apparently document two is more relevant to query string q. Under such cases,higher weight should be put when the query string matches the query word more comprehensively.

    The matching degree between query string q and the rkabstract. If the feature term matches the abstract rather comprehensively, it should have higher weight. The matching level of feature item ti and abstract is represented by pg(ti,Sj,rk? abs), and the computing method is shown in Eq. (6).

    in the above method, w(ti) represent the weight of each feature item given by query string.

    The matching level of query string q and abstract can be represented as pg(ti,Sj,rk? abs),and the computing formula is shown in Eq. (7).

    3.1.1 The computing of the similarity of feature item tiand rkabstract

    Now let’s compute the similarity between every feature item of the query string and the result rk, then the similarity between each feature item tiand rk abstract can be represented by sim ti,Sj,rk,? abs , which is shown in Eq. (8).

    in the above method, N(ti,abs) represents the times that feature item tiof the query string occurred in the query result rk, and length(abs) represents the length of query result rkabstract, position(ti,k) represents the k times that feature item tioccurred in the abstract. Then the computing method of the similarity between query string q and abstract is shown in Eq. (9).

    3.1.2 Computing of the similarity of query string q and rk

    If the similarity of query string q and abstract is represented as corr(q,Sj,rk.abs), the computing method is shown in Eq. (10).

    and the query result rkcan be represented as Eq. (11).

    the computing of the similarity of query string q and rkquery result. The computing can be more scientific by making weighted summation of the similarity of query string q and title rkand abstract. The two weights are represented as α and β, and the ultimate similarity as corr(q,Sj,rk), the formula is as Eq. (12).

    where α +β =1.

    3.2 Computing of relevant score of the query result

    The Borda sorting idea is the accumulated ultimate score of every result, whose query result is voted by search engine, and the score has considered the position of query result.In this paper, the ultimate relevant score of query result rk is represented as the above weighted summation of position relevance pos(q,Sj,rk) and the similarity corr(q,Sj,rk)between query word string and query result rk. The computing method is as Eq. (13).

    where ω and θ are weight factors, and ω + θ =1.

    3.3 Score computing of the ultimate borda of the query result

    Through the above steps we have computed the relevant score of the query result rk, the score of the results searched by many member search engines is the sum of each one of them. Hence, for n member search engines, the Borda score of the query result rkis represented by Borda(q,Sj,rk) as Eq. (14).

    in the end, descending the query result according to the score of Borda(q,Sj,rk), and display it to users.

    4 Experiment results and analysis

    Authors should discuss the results and how they can be interpreted in perspective of previous studies and of the working hypotheses. The findings and their implications should be discussed in the broadest context possible. Future research directions may also be highlighted.

    4.1 Selection of dataset

    To analyze and exam the algorithm with experiment, we build a prototype system of search engine, whose member search engines are Baidu, Yahoo, Bing and Sogou. We do experiments on representative retrieval topics, and each time of the search concludes the first 30 results of their member queries.

    The query dataset uses the top 100 query words on the search ranking list of search engines in 2004. In this experiment, we use query words of different topics. In the end,we compare them concerning effect of algorithm.

    4.2 Evaluation method

    Common evaluation methods in search engine domain are recall, precision, system response time, etc. Because of the principle of element search engine, normally they all can get pretty high recall ratio, and the formula we use in this paper to evaluate the efficiency of algorithm by precision is demonstrated in Eq. (15).

    4.3 Result and analyze

    4.3.1 The influence on the algorithm by weight factors ω and θ

    In the algorithm in the paper, the weight factors ω and θ influence the weight of position and similarity factors, hence their dereferencing have great influence on the algorithm. In the experiment, the dereferencing of ω vary from 0.1 to 0.9, and the variety of the average precision on different dereferencing is demonstrated in Fig. 1.

    Figure 1: The relationship between the dereferencing (ω) and the average precision

    As we can see from Fig. 1, when ω<0.4, the variety remains barely changed, but when the dereferencing is around 0.6, the precision reaches its highest point, and then in the downward trend. Hence, in the following experiment, the dereferencing of weight factor is ω=0.6, which means the great value of the result permutation position in the return results collection of its search engine.

    4.3.2 Comparison between the algorithm in the paper and independent search engine

    To verify the effectiveness of the algorithm in the paper, we will compare the element search engine NMSE of the algorithm with the average precision rate and recall rate of its element search engine. Different search engine will have different effect in accordance with different query subject, for example, among the search engines, the precision rate of searching “Ebola virus” of Baidu is 0.75, of Yahoo is 0.68, of Bing is 0.59, and of Sogou is 0.67. And when searching other words, we receive different results. In the following section, we will search with every independent search engine and the element search engine using the algorithm in the paper, and the effect of average value comparison is demonstrated in Fig. 2.

    Figure 2: Average precision comparison

    As we can see from Fig. 2, Baidu remains the leading role in Chinese searching, while the element search engine used the algorithm in the paper has higher average precision rate than Baidu when searching different subjects.

    4.3.3 Comparison between the improved algorithm in the paper and classic element search engine sorting algorithm

    The algorithm in the paper is improved based on the Borda sorting algorithm in element search engine. To verify the efficiency of the algorithm, we now choose several classic sorting algorithms as comparison object, which are Borda sorting algorithm, Round-Robin algorithm and Comb SUM algorithm.

    The Round-Robin algorithm adopts the idea of polling, and its algorithm method is to first arrange the member search engines in a certain order, and when the search engine does results merging, get the first result of its member search engine, then the second, and so on. Comb SUM algorithm is a relevance score method, because local similarity of different search engines cannot be compared but to composed directly, we can get normalized relevance score by mapping the position of search result to [0,1]. Com SUM algorithm is to add all the relevance scores that occur in different search engines as the ultimate relevance score, and sorting in this order.

    We now select query key words of different subjects from the dataset, and do search experiment for ten consecutive years under the Web environment, in the end, we extract the average value. The comparison effect of the four algorithms is demonstrated in Fig. 3.

    Figure 3: Precision comparison diagrams between our algorithm and traditional algorithm

    As we can see fromFig. 3, along with the increase of results, the precision is declining.The algorithm in the paper has better precision than traditional Borda sorting algorithm,and also higher than the other two traditional sorting algorithm, which means that the improved algorithm is very effective.

    5 Conclusions

    The improved algorithm has made the following improvements on the basis of traditional Borda sorting algorithm. (1) Normalize the sorting position of the query results, and replace the position score with position relevance. We cannot directly compare the query result position in the search engine, because the results returned from each search engine are few yet different, which is why it is not accurate to represent the position score by the quantity, whereas position relevance can better represent the relevance between position and query word. (2) Considering the current relevance algorithm is to first download the original document, then compute in unification the global similarity, which waste a lot of time and network resource thus cannot be accepted by users. According to research, the title and abstract of search results centralized the main information of the websites, so in the paper, we compute global relevance with information extracted from titles and abstracts returned by websites. (3) When computing the similarity with titles and abstracts, we combined the matching weight of query words and results, which makes the computing more accurate. However, there exist some shortcomings in time efficiency.Besides, it does not take individualized needs of different users into consideration.Element search engine will be more personalize, professionalize, and intellectualize,which is also a hotspot for future element search engine research.

    Acknowledgement:This work was funded by the National Natural Science Foundation of China under Grant (No. 61772152 and No. 61502037), the Basic Research Project(Nos. JCKY2016206B001, JCKY2014206C002 and JCKY2017604C010), and the Technical Foundation Project (No. JSQB2017206C002).

    狂野欧美激情性xxxx| 精品无人区乱码1区二区| 国产午夜精品论理片| 亚洲av电影不卡..在线观看| 99国产综合亚洲精品| 一进一出好大好爽视频| 大型黄色视频在线免费观看| 欧美日韩精品网址| 久久久久久久久中文| 亚洲国产精品久久男人天堂| 真人一进一出gif抽搐免费| 18禁在线播放成人免费| 变态另类丝袜制服| 国产成年人精品一区二区| 久久精品人妻少妇| 欧美绝顶高潮抽搐喷水| 淫妇啪啪啪对白视频| 欧美成人免费av一区二区三区| 国产成人av教育| 免费搜索国产男女视频| 露出奶头的视频| 男女床上黄色一级片免费看| 欧美bdsm另类| 老汉色∧v一级毛片| www日本在线高清视频| 内射极品少妇av片p| 日日夜夜操网爽| 久久伊人香网站| 久久久国产成人免费| 啪啪无遮挡十八禁网站| 国产一区二区在线av高清观看| 国产精品久久久人人做人人爽| 嫩草影视91久久| 久久精品91蜜桃| 在线十欧美十亚洲十日本专区| 国产成+人综合+亚洲专区| 脱女人内裤的视频| 中文在线观看免费www的网站| 色视频www国产| 欧美乱妇无乱码| 一区二区三区免费毛片| 亚洲五月天丁香| 欧美激情在线99| 天堂√8在线中文| 国产精品一及| 国产精品久久久人人做人人爽| 最新中文字幕久久久久| 中文字幕av成人在线电影| 国内精品美女久久久久久| 99视频精品全部免费 在线| 国产亚洲精品久久久久久毛片| 一级黄色大片毛片| 国产精品99久久久久久久久| 欧美高清成人免费视频www| 欧美一级a爱片免费观看看| 中文字幕人妻熟人妻熟丝袜美 | 亚洲国产欧美网| 午夜日韩欧美国产| 欧美高清成人免费视频www| 丁香六月欧美| 99热精品在线国产| 国产精品 欧美亚洲| 91麻豆av在线| 国产精品亚洲av一区麻豆| 亚洲人成伊人成综合网2020| av女优亚洲男人天堂| 欧美成人一区二区免费高清观看| 岛国在线免费视频观看| 国产伦人伦偷精品视频| 我要搜黄色片| 超碰av人人做人人爽久久 | 国内精品久久久久久久电影| 亚洲最大成人手机在线| 中国美女看黄片| 老鸭窝网址在线观看| 久久亚洲真实| 亚洲欧美一区二区三区黑人| 91在线精品国自产拍蜜月 | 无人区码免费观看不卡| 日韩成人在线观看一区二区三区| 免费无遮挡裸体视频| 欧美乱色亚洲激情| 中文资源天堂在线| 久久久久久久久中文| 亚洲国产日韩欧美精品在线观看 | 精华霜和精华液先用哪个| 日韩 欧美 亚洲 中文字幕| 国产不卡一卡二| 亚洲美女视频黄频| 久久中文看片网| 亚洲内射少妇av| 国产成人福利小说| 露出奶头的视频| 国产精品精品国产色婷婷| 欧美性感艳星| av视频在线观看入口| 十八禁人妻一区二区| 久久久精品欧美日韩精品| 舔av片在线| a级毛片a级免费在线| 深爱激情五月婷婷| 久久久久久国产a免费观看| 久久久久久大精品| 露出奶头的视频| 在线观看美女被高潮喷水网站 | www日本黄色视频网| 搡女人真爽免费视频火全软件 | 精品久久久久久,| 国产野战对白在线观看| 精华霜和精华液先用哪个| 搡女人真爽免费视频火全软件 | 日韩成人在线观看一区二区三区| av国产免费在线观看| 中文字幕人成人乱码亚洲影| 精品国产美女av久久久久小说| 黄片小视频在线播放| 免费高清视频大片| 露出奶头的视频| 女人十人毛片免费观看3o分钟| 免费大片18禁| 久久久久久久精品吃奶| 免费看十八禁软件| 欧美乱妇无乱码| 熟女人妻精品中文字幕| 日韩有码中文字幕| 欧美色欧美亚洲另类二区| 亚洲人成网站在线播| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 极品教师在线免费播放| 性色av乱码一区二区三区2| www.www免费av| 亚洲av免费高清在线观看| 中亚洲国语对白在线视频| 日本 欧美在线| 久久久久久久久久黄片| 中文字幕人妻丝袜一区二区| 亚洲精品美女久久久久99蜜臀| 美女大奶头视频| 伊人久久大香线蕉亚洲五| 国产精品久久久久久久电影 | 91在线精品国自产拍蜜月 | 国产精品一区二区三区四区免费观看 | 91久久精品电影网| 国产真实伦视频高清在线观看 | 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 日韩大尺度精品在线看网址| 1024手机看黄色片| 免费一级毛片在线播放高清视频| 国产精品一区二区三区四区免费观看 | 国产一区二区在线观看日韩 | 中文在线观看免费www的网站| 亚洲av中文字字幕乱码综合| 亚洲国产高清在线一区二区三| 搡老岳熟女国产| 免费观看人在逋| 国内精品久久久久久久电影| 日韩欧美国产在线观看| 欧美日韩精品网址| 又粗又爽又猛毛片免费看| 99久久精品热视频| 乱人视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 91九色精品人成在线观看| 国产一区二区三区视频了| 在线免费观看的www视频| 亚洲性夜色夜夜综合| 午夜福利视频1000在线观看| 性欧美人与动物交配| 欧美大码av| 国产老妇女一区| 特大巨黑吊av在线直播| 精品久久久久久成人av| 亚洲avbb在线观看| 中文字幕人妻熟人妻熟丝袜美 | 免费av不卡在线播放| 国产高清视频在线播放一区| 我的老师免费观看完整版| 黄色成人免费大全| 色视频www国产| 观看免费一级毛片| 真实男女啪啪啪动态图| xxx96com| xxx96com| 亚洲天堂国产精品一区在线| 一级毛片高清免费大全| 一级毛片高清免费大全| 啦啦啦韩国在线观看视频| 久久久精品大字幕| 国产精品一区二区免费欧美| 亚洲在线观看片| 国产精品亚洲美女久久久| 欧美乱色亚洲激情| 欧美日韩精品网址| 在线观看av片永久免费下载| 午夜免费成人在线视频| 色综合亚洲欧美另类图片| 香蕉av资源在线| 精品国产三级普通话版| 亚洲av成人av| 久久久精品欧美日韩精品| 俺也久久电影网| 欧美日韩一级在线毛片| 亚洲精品乱码久久久v下载方式 | 亚洲av第一区精品v没综合| 最近视频中文字幕2019在线8| 午夜老司机福利剧场| 国产淫片久久久久久久久 | 亚洲国产精品999在线| 12—13女人毛片做爰片一| 好男人电影高清在线观看| 在线a可以看的网站| 神马国产精品三级电影在线观看| 又粗又爽又猛毛片免费看| 国产男靠女视频免费网站| 亚洲自拍偷在线| 亚洲自拍偷在线| 精品国产美女av久久久久小说| 男女午夜视频在线观看| 女人高潮潮喷娇喘18禁视频| 欧美+亚洲+日韩+国产| 最新中文字幕久久久久| 国产精品久久久人人做人人爽| 日本 av在线| 色综合站精品国产| 一个人免费在线观看电影| 亚洲成人久久爱视频| av片东京热男人的天堂| 国产在线精品亚洲第一网站| 一级毛片女人18水好多| 欧美高清成人免费视频www| 午夜免费男女啪啪视频观看 | 欧美一区二区亚洲| 淫秽高清视频在线观看| 偷拍熟女少妇极品色| 久9热在线精品视频| 熟女人妻精品中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av在线有码专区| 欧美日韩精品网址| 色在线成人网| 久久婷婷人人爽人人干人人爱| 精品久久久久久久毛片微露脸| 一本一本综合久久| 99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 91九色精品人成在线观看| 日韩欧美 国产精品| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产精品久久久不卡| 成人午夜高清在线视频| 少妇人妻精品综合一区二区 | 99热6这里只有精品| 美女高潮的动态| 免费人成在线观看视频色| 国产亚洲精品av在线| 成人国产综合亚洲| 亚洲 欧美 日韩 在线 免费| 亚洲人成网站高清观看| 精品国内亚洲2022精品成人| 亚洲成av人片在线播放无| 欧美日韩国产亚洲二区| 麻豆成人av在线观看| 亚洲精品在线美女| 久久国产乱子伦精品免费另类| 亚洲国产欧美人成| 69人妻影院| 免费在线观看成人毛片| 久久久久精品国产欧美久久久| 日韩精品中文字幕看吧| 久久香蕉精品热| 欧美av亚洲av综合av国产av| 国产亚洲欧美在线一区二区| 日本免费a在线| 国产美女午夜福利| 国产精品久久电影中文字幕| 成人精品一区二区免费| 人妻夜夜爽99麻豆av| 精品人妻偷拍中文字幕| 丁香欧美五月| 变态另类丝袜制服| 观看美女的网站| 一本久久中文字幕| 免费看日本二区| 国产亚洲精品一区二区www| 麻豆久久精品国产亚洲av| www.999成人在线观看| 免费搜索国产男女视频| 老司机午夜福利在线观看视频| 在线播放国产精品三级| 欧美黄色淫秽网站| 日日摸夜夜添夜夜添小说| 国产午夜精品论理片| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| av女优亚洲男人天堂| 亚洲人与动物交配视频| 99精品在免费线老司机午夜| 一个人看的www免费观看视频| 亚洲片人在线观看| 久久久国产精品麻豆| 久久性视频一级片| 性欧美人与动物交配| 国产精品野战在线观看| 欧美日韩精品网址| 人人妻,人人澡人人爽秒播| 国产精品免费一区二区三区在线| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 婷婷丁香在线五月| 18+在线观看网站| 欧美又色又爽又黄视频| 久久精品影院6| 岛国在线免费视频观看| 麻豆国产av国片精品| 国产高清三级在线| www日本在线高清视频| 精华霜和精华液先用哪个| 日韩免费av在线播放| av国产免费在线观看| 男女下面进入的视频免费午夜| 欧美在线一区亚洲| 国产麻豆成人av免费视频| 99久久精品一区二区三区| 久久国产精品影院| 高清日韩中文字幕在线| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 淫秽高清视频在线观看| 男人舔奶头视频| 色哟哟哟哟哟哟| 丰满的人妻完整版| 琪琪午夜伦伦电影理论片6080| 搡老妇女老女人老熟妇| 18美女黄网站色大片免费观看| 亚洲人与动物交配视频| 三级毛片av免费| 小蜜桃在线观看免费完整版高清| 全区人妻精品视频| 波多野结衣高清作品| 中国美女看黄片| 人妻久久中文字幕网| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 午夜福利欧美成人| 乱人视频在线观看| 97超级碰碰碰精品色视频在线观看| 两个人看的免费小视频| 亚洲成av人片在线播放无| 午夜福利18| 国产国拍精品亚洲av在线观看 | 深爱激情五月婷婷| 天天躁日日操中文字幕| 欧美极品一区二区三区四区| 757午夜福利合集在线观看| 日韩欧美 国产精品| 国产精品免费一区二区三区在线| 亚洲性夜色夜夜综合| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 床上黄色一级片| 久久午夜亚洲精品久久| 日韩欧美在线二视频| 午夜日韩欧美国产| 国产真实伦视频高清在线观看 | 久久久国产成人免费| 国内久久婷婷六月综合欲色啪| 99视频精品全部免费 在线| 国内精品久久久久精免费| 精品不卡国产一区二区三区| www.色视频.com| 亚洲最大成人手机在线| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 热99在线观看视频| 男人的好看免费观看在线视频| 国产成人欧美在线观看| 中文字幕高清在线视频| 欧美日韩综合久久久久久 | 男女午夜视频在线观看| 在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合| 精品人妻1区二区| or卡值多少钱| 特大巨黑吊av在线直播| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9 | 精品久久久久久久毛片微露脸| 久久草成人影院| 一级毛片高清免费大全| 成年女人看的毛片在线观看| 国产一区二区激情短视频| 久9热在线精品视频| 国产高清videossex| 欧美日本视频| 12—13女人毛片做爰片一| 十八禁网站免费在线| 在线免费观看不下载黄p国产 | 中文字幕久久专区| 波多野结衣高清无吗| 免费电影在线观看免费观看| 天天躁日日操中文字幕| 人妻丰满熟妇av一区二区三区| 午夜福利在线观看免费完整高清在 | 日本一本二区三区精品| 精品不卡国产一区二区三区| av国产免费在线观看| 99国产综合亚洲精品| 无人区码免费观看不卡| 可以在线观看的亚洲视频| 国产精品野战在线观看| 日韩成人在线观看一区二区三区| 久久久久久久久久黄片| 国产成人aa在线观看| 久久久久久久久中文| 日本与韩国留学比较| 免费看美女性在线毛片视频| 久久久国产成人免费| 老司机深夜福利视频在线观看| 神马国产精品三级电影在线观看| 精品免费久久久久久久清纯| e午夜精品久久久久久久| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 国产伦人伦偷精品视频| 日本三级黄在线观看| 一级黄色大片毛片| 他把我摸到了高潮在线观看| 青草久久国产| 免费一级毛片在线播放高清视频| 成人三级黄色视频| 最近最新中文字幕大全免费视频| 97超级碰碰碰精品色视频在线观看| 欧美国产日韩亚洲一区| 精品人妻偷拍中文字幕| 露出奶头的视频| 老司机福利观看| 1000部很黄的大片| 中文字幕熟女人妻在线| 国产精品永久免费网站| 老司机在亚洲福利影院| 精品乱码久久久久久99久播| 欧美3d第一页| 舔av片在线| 国产单亲对白刺激| 9191精品国产免费久久| 欧美午夜高清在线| 性色avwww在线观看| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 桃红色精品国产亚洲av| 国产高清三级在线| 色在线成人网| 91久久精品国产一区二区成人 | 欧美成人免费av一区二区三区| 1000部很黄的大片| 国产三级黄色录像| www.熟女人妻精品国产| 不卡一级毛片| 精品免费久久久久久久清纯| 蜜桃久久精品国产亚洲av| 男女午夜视频在线观看| 九九热线精品视视频播放| 午夜久久久久精精品| 91在线观看av| 久久久久久久久大av| 午夜激情福利司机影院| 动漫黄色视频在线观看| 床上黄色一级片| 欧美日韩福利视频一区二区| h日本视频在线播放| 国产一区在线观看成人免费| 亚洲黑人精品在线| 国产高清三级在线| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 高清在线国产一区| 熟女电影av网| 国产一区二区亚洲精品在线观看| 女警被强在线播放| 不卡一级毛片| 国产一区在线观看成人免费| 毛片女人毛片| 日韩欧美在线乱码| 亚洲成人久久性| 他把我摸到了高潮在线观看| 午夜精品在线福利| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 精品久久久久久成人av| 我的老师免费观看完整版| 亚洲精华国产精华精| 啦啦啦韩国在线观看视频| 午夜免费观看网址| 亚洲人与动物交配视频| 中文资源天堂在线| 久久99热这里只有精品18| 午夜福利视频1000在线观看| 欧美精品啪啪一区二区三区| 天堂√8在线中文| 九色国产91popny在线| 99国产极品粉嫩在线观看| 最近在线观看免费完整版| 久久久久免费精品人妻一区二区| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 国产精品综合久久久久久久免费| 琪琪午夜伦伦电影理论片6080| 高潮久久久久久久久久久不卡| 男女做爰动态图高潮gif福利片| 国产淫片久久久久久久久 | 亚洲精品粉嫩美女一区| 欧美中文综合在线视频| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 久久久精品大字幕| 国产精品免费一区二区三区在线| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 国产黄色小视频在线观看| 午夜日韩欧美国产| 少妇丰满av| 一级黄片播放器| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 女人高潮潮喷娇喘18禁视频| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 在线视频色国产色| 18美女黄网站色大片免费观看| 色老头精品视频在线观看| 香蕉av资源在线| 级片在线观看| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 成年版毛片免费区| 欧美一区二区国产精品久久精品| 怎么达到女性高潮| 日韩 欧美 亚洲 中文字幕| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女| 丝袜美腿在线中文| 中文字幕高清在线视频| 国产一区二区在线av高清观看| 少妇的丰满在线观看| 99国产极品粉嫩在线观看| 午夜老司机福利剧场| 婷婷精品国产亚洲av| 亚洲av日韩精品久久久久久密| 天堂网av新在线| 一级a爱片免费观看的视频| 久久久久性生活片| 色老头精品视频在线观看| 91在线精品国自产拍蜜月 | 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 欧美性猛交╳xxx乱大交人| 精品久久久久久成人av| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 日韩国内少妇激情av| 男女床上黄色一级片免费看| 蜜桃亚洲精品一区二区三区| 日韩中文字幕欧美一区二区| 美女黄网站色视频| 免费观看的影片在线观看| 欧美高清成人免费视频www| 国产私拍福利视频在线观看| 欧美国产日韩亚洲一区| 波多野结衣高清无吗| 亚洲,欧美精品.| www国产在线视频色| 国产高潮美女av| 好男人在线观看高清免费视频| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 99久久精品国产亚洲精品| 国产精品综合久久久久久久免费| 综合色av麻豆| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 亚洲欧美精品综合久久99| 婷婷精品国产亚洲av在线| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 中文在线观看免费www的网站| 99热只有精品国产| 淫妇啪啪啪对白视频| 草草在线视频免费看| 成人18禁在线播放| 国产野战对白在线观看| 欧美色欧美亚洲另类二区| 一个人看的www免费观看视频| 男人的好看免费观看在线视频| 亚洲精品在线美女| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看| www.色视频.com| 精品人妻一区二区三区麻豆 | 欧美极品一区二区三区四区| 精品国产亚洲在线|