• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing the Qusai-static Folding and Deploying of Thin-Walled Tube Flexure Hinges with Double Slots

    2014-02-07 12:44:40YANGHuiDENGZongquanLIURongqiangWANGYanandGUOHongwei

    YANG Hui,DENG Zongquan,LIU Rongqiang,WANG Yan,and GUO Hongwei*

    State Key Laboratory of Robotics and System,Harbin Institute of Technology,Harbin 150080,China

    1 Introduction*

    The deployment mechanisms for numerous systems on satellites,such as synthetic aperture radars(SARs),solar arrays and booms,must be packed into compact volume for launching and also be able to spread to the operational configuration.The ordinary stowage and deployable apparatuses always use standard pin-jointed hinges to realize connection,which have moving parts and are sensitive to the friction.The stored strain energy deployable structures can be folded elastically and deployed by releasing the strain energy.Thus they have several key attractions for space applications which include lower cost,lightness,and friction insensitiveness.Besides,the stored strain energy deployable structures,like the tape spring hinges,the integral hinge,and the thin-walled tube flexure hinges with slots could be latched elastically by themselves.Therefore,these structures arouse numerous interests in research.It is well known that the TWTF hinges have been used in the Mars Advanced Radar for Subsurface and Ionosphere Sounding(MARSIS)[1].

    To better comprehend the folding and deploying characters of tape spring hinges,relevant researches have been accomplished by using different analytical,numerical and experimental methods.MANSFIELD investigated that the tape spring like structures had the property of snap-through flexural buckling[2].SEFFEN,et al[3–5],investigated the deployment dynamics of the tape-spring hinge by the moment-rotation relationship.YEE,et al[6],discussed the relationship between longitudinal radius of the elastic folding scope and the transverse radius of the tape spring cross section for the composite tape springs.SILVER[7]analyzed the effects of shell geometry on tape-spring developed strength performance based on the Donnel-Mushtari-Vlasov shell theory for symmetric laminates.To improve the bending stiffness in the deployed allocation and the folding moment,several tape-springs were arranged in an offset or symmetric configuration by WARREN,et al[8]and BOESCH,et al[9].LANE,et al[10],tested one deployable structures of low-Earth-orbiting flight demonstration system which is connected by composite tape-spring hinges.To understand the impact of folding the tape-spring in three dimensions,WALKER,et al[11–12],studied the static moments by analytical methods and the development dynamics by experiments.KWOK[13]focused his study on the time and temperature dependent property stemming from the viscoelasticity and reciprocity with the geometrically response of the thin-walled structures.

    The Integral hinges can be more stable with the entire structures under elastic deforming.These structures include the storable tubular extendible member(STEM)[14],the extendable boom consisted by joining two omega-shaped thin metal shells at the longitudinal edges[15],folding large antenna tape spring(FLAT)[16–17],and the hollow solid reflector structures[18]as shown in Fig.1.Though,a better stiffness,thermal properties and simpler fabrication are important for some applications.The TWTF hinges with two or three parallel longitudinal slots can meet those needs,which were proposed by MARKS and investigated the deployed dynamics of the mars advanced radar for subsurface and ionosphere sounding(MARSIS)by MOBREM,et al[19–23].MALLIKARACHCHI,et al[24–25],carried out a study on the quasi-static folding and deploying of the composite TWTF hinges by numerical and experiment methods,and optimized the slot geometry on the folding maximum strain.However,the previous optimization studies may miss some optimal results since they just change the geometry parameters at regular intervals.Moreover,the post-buckling behavior of the TWTF hinges folding and deploying involves high nonlinearities of geometry and material.The surrogate model techniques are often used in the nonlinear finite element analysis for fast iteration.Thus,considering the computational burden caused by the large range of design varies and optimization efficiency,the response surface method(RSM)is employed to derive the surrogate model for the TWTF hinges.

    Fig.1.Hollow solid reflector

    The purpose of this study is to optimize the quasi-static folding and deploying behaviors of the TWTF hinge with double slots as shown in Fig.2.The maximum peak moment of folding and deploying as well as minimum mass of the TWTF hinge are set as objectives.The slots length and the slots width are considered as the design variables,while the maximum Mises stress is set not to exceed the allowable stress.The RSM is employed to construct the functions of peak moment and maximum Mises stress.Beside this,parameter studies are performed to investigate the effect of the slots length and the slots width on the quasi-static folding and deploying performances of the TWTF hinges.The 25 samples design points are analyzed by ABAQUS/Explicit solver,which are used to derive the response surface functions.The multidisciplinary optimization software ISIGHT is employed to perform the multi-objective optimization.

    Fig.2.Thin-walled tube flexure hinge

    2 Problem Description

    The hinges considered in this study are TWTF hinges with double symmetric slots,and the slots width is equal to the end semicircle diameter.Meanwhile,the aim is to find the optimal slots parameters of the TWTF hinges to provide higher peak moment during folding and deploying as well as lower mass.The slot length and the slot width are chosen as two design variables,while the hinge total length and the end-section diameter are set as constants,the basic configuration is shown in Fig.3.

    Fig.3.Dimensions of the TWTF hinge

    When antennae work,the hinges should have enough bending stiffness to resist any shock.Take into account the cost of launch,the antennae mass is also limited.Thus,the peak moment of folding(Mf)and deployment(Md),and the mass are set as the multi-objectives in this study.The Mfand Mdshould be maximized,but the mass should be minimized.The two design parameters l and w couldn’t beyond the upper bound and the lower bound.What’s more,the maximum stress(Smax)is chosen as the constraint.Therefore,the optimization problem modeled is as follows:

    The RSM is employed to create the surrogate models for the optimal design objectives and design constraint in the later sections.

    3 Response Surface Methodology(RSM)

    Response surface methodology,as presented by BOX and WILSON[26],is a collection of mathematical and statistical techniques,and is widely applied in the optimization problem and processes developing[27–31].To get the optimal folding and deploying behaviors of TWTF hinges with double slots and reduce the computational cost,the surrogate models are modeled by RSM.

    In the study,the responses of the TWTF hinges with double slots are Mf,Mdand Smax,which can be written in terms of a series basic function as

    is the responses of Mf,Mdand Smax,N is the number of the basic functionsφi(l,w),βiis the coefficients of the basic functions,εis the error between the RS approximation at the point and the response yifrom FEA results.To ensure precision,the quartic polynomials of basic functions are chosen,so the responses can be written as follows:

    The regression coefficients of quartic polynomials can be calculated by using the least-square method,which is

    Where coefficient b=(β1,β2,…,βn),matrixφis

    where M is the design points number.By substituting the Eq.(5)into Eq.(4),coefficient b can be determined.

    The accuracy of the responses should be evaluated by some criteria,such as relative error(RE),the coefficient of multiple determination(R2),the root mean square error(RMSE),and the adjusted coefficient of multiple determinationrespectively,as follows:

    where yiis the FEA results,SSTrepresents the total sum of squares,and SSErepresents the sum of squares of the residuals,respectively,as follows:

    For the RS model,the values of R2andvary from 0 to 1,which mean the level of correlation between FEA results and the responses,thus the bigger the values ofand the smaller the values of REand RMSE,the better the fitness[32].

    4 Design Optimization

    4.1 Design of experiment(DOE)

    For the purpose of deriving the function of Mf,Mdand Smax,finite element analyses(FEA)should be performed for a series of design points determined by design of experiment(DOE)within the design domain.There are some available DOE methods,such as orthogonal arrays,central composite design,Latin hypercube,full factorial,etc[33].The five-level full factorial design is employed in the following study,the slots length is changed from 40 mm to 80 mm by every 10 mm,and the slots width is changed from 8 mm to 12 mm by every 1 mm as shown in Table 1,which resulted in 5×5 sampling design points evenly distributed within the design ranges.Then,the coefficients of polynomial βiare calculated from the FEA results by using Eq.(4)and Eq.(5).

    Table 1.Step size and range of design variables of TWTF hinge with double slots

    4.2 Finite element modeling

    The material of TWTF hinges with double slots is titanium-nickel alloy Ni36CrTiAl with mass density ρ=8.0×103kg/m3,Young’s modulus E=20 GPa,Poisson’s ratio ν=0.35,yield stress σy=0.98 GPa,Ultimate stress σu=1.194 GPa.The total length of TWTF hinges is fixed as 180 mm,and the end-section diameter D is 19.5 mm and the thickness t is 0.12 mm.Both the folding time and deployment time of TWTF hinges are set as 1s.

    As mentioned before,the FE models are set up in the ABAQUS/Explicit with four nodes fully reduced integrated shell elements(S4R)with element size 1.8 mm.To simulate the quasi-static folding and deploying of TWIF hinges,the end rotation two reference nodes 1 and 2 are located on each end and set as kinematic coupling constraint to either end surface.Node 1 is restrained all of the freedom except the rotation about the global y-axis,and node 2 is allowed to rotate about the y-axis as well as translate along the global z-axis.The bending angle α of the hinge is the sum of the rotational angle of the two reference nodes.To prevent damage,a small equal and opposite pinching load is applied to the middle of hinges before rotating to 170°as plotted in Fig.4.The little pinching load will be released during deployment step.In order to apply loads as smoothly as possible,the Smooth-Step is employed to apply and remove loads.To analyze the contact among the surfaces of TWTF hinge,the general contact is assigned to the whole model.

    Fig.4.Finite element model for TWTF hinge with double slots

    The deformation modes of the TWTF hinges with two typical deform configurations under a von Mises stress on different bending angle α can be depicted in Fig.5,the quasi-static deployment of the TWTF hinges is similar to the inverse process of folding.The FEA results of 25 design points are listed in Table 2.

    Fig.5.Two typical deformed configuration of TWTF hinges under a von Mises stress

    Table 2.FEA results for the selected 25 design points

    4.3 Response surface method

    After getting the sample points of the quasi-static folding and deploying,the responses surface models for the TWTF hinges then can be derived by Eqs.(4)and(5)based on the simulation results in Table 2.So the quartic response polynomial functions of Mf,Mdand Smaxare derived as follows:

    According to Fig.3,mass of the TWTF hinge(M)with double slots can be calculated by

    According to Eqs.(6)–(11)based on section 3,the total errors between response surface model and FEA analysis are derived.The RMSE,R2and R2adjfor maximum stress are RMSE=0.006 016,R2=0.996 157,R2adj=0.991 615,Mfare RMSE=0.061 211,R2=0.985 659,R2adj=0.968 710 and Mdare RMSE=0.008 806,R2=0.982 983,R2adj=0.962 871.

    The values of R2andare much closed to 1,and the RMSEis small enough to evaluate the precise of the RS model.Hence,the regression models of the 25 design points are validated to be accurate for this study.The response surface of Mf,Mdand Smaxis plotted the slots length and slots width in Fig.6.

    Fig.6.Response surface of Mf,Mdand Smax

    The modified Non-Dominated Sorting Genetic Algorithm(NSGA-Ⅱ)is employed for the multi-objectives optimization.The population size and the generation are set to 48 and 50 respectively.The feasible designs of the optimization are depicted in Table 3,the indexes of Mdand Smaxis dominated,so the optimal design is selected as No.6,i.e.the slots length is 65.611 mm and the slots width is 9.873 mm.In this configuration,the maximum stress is lower and the peak moment is greater.So the deploying capacity of TWTF hinge is better and the stress distribution is smoother.Meanwhile,the numerical simulation of the optimal design is performed by ABAQUS/Explicit to ensure the correctness.The relative errors between the FEA results and optimal design of Md,Mfand Smaxare less than 7% which could be calculated from Table 4.

    Table 3.Feasible designs of the TWTF hinge folding and deploying behaviors

    Table 4.Relative errors between the FEA results and optimal design

    5 Parametric Studies

    Influences of the thin-walled hinges slots length l and slots width w on Mf,Mdand Smaxare investigated in this section based on Table 2.The baseline hinge geometry is used for the parametric study with D=19.5 mm,L=180 mm and t=0.12 mm.The slots width w equals to the slots end semicircle diameter ranging from 8 mm to 12 mm,and the slots length l ranging from 40 mm to 80 mm.Therefore,it is possible to reveal the effects of the design parameters l and w on the TWTF hinges quasi-static folding and deploying behaviors from Fig.7–Fig.9.

    Fig.7.Variation of Mfwith slots length l and slots widt h w

    5.1 Effects of slots length and slots width on Mf

    Fig.7 shows the peak moment during TWTF hinges quasi-static folding versus different slots length and slots width.It can be observed that the shorter the slots length is or the narrower the slots width is,the greater the peak moment of folding is.It should be pointed out that when the slots width is smaller to 10 mm,the peak moment is increased with the slots length changing from l=50 mm to l=60 mm as shown in Fig.7(a).In addition to this,when the slots length is below 60 mm and the slot width below 10 mm,the wider the slots width,the greater the peak moment of folding as depicted in Fig.7(b).It can be found that the peak moment during folding is very sensitive to both the slots length and the slot width.When the slots length is changed from 40 mm to 80 mm,Mfis decreased by 24.2%–61.3%.When the slots width is changed from 8 mm to 12 mm,Mfis decreased by 8.9%–53%.

    Fig.8.Variation of Mdwith slots length l and slots width w

    Fig.9.Variation of Smaxwith slots length l and slots width w

    5.2 Effects of slots length and slots width on Md

    Fig.8 shows the peak moment during TWTF hinges quasi-static deployment versus different slots length and slots width.It can be seen that the longer the slots length is,the lower the peak moment of deployment.But for l=40 mm the peak moment is lower than that for l=50 mm as shown in Fig.8(a).The reason is that the slots length is too small to fold the TWIF hinges.Moreover,it should be revealed that the narrower the slots width,the greater the peak moment of deployment as shown in Fig.8(b).When the slots length is changed from 40 mm to 80 mm,Mdis decreased from–23.8% to 17%.When the slots width is changed from 8 mm to 12 mm,Mdis decreased by 16.9%–26%.

    5.3 Effects of slots length and slots width on Smax

    Fig.9.shows the effects of the slots length and the slots width on Smaxin the complete folded configurations.It can be seen that the maximum stress is more sensitive to the slots length than the slots width.The Smaxcontinuously decrease as slots length increase with fixed slots width as seen from Fig.9(a).But when l=40 mm and l=50 mm the last value of Smaxfor each curve increase obviously,the reason is that when w≤11 mm and l≤50 mm the maximum stress locates in the middle of the dominates,and when w=12 mm or l≥60 mm the maximum stress locates on the transition from the slots length to the slots end circle.It is interesting to note that when l=60 mm all the Smaxapproximately equal with each other as shown in Fig.9(b),that’s because the special slots length l=60 mm of all the design points is most closed to the perimeter of the half circle described by the hinge in the folded position.If the slots length is closed to the perimeter,there would be a semicircle in the folding region,so the stress distribution is smoother.When the slots length is changed from 40 mm to 80mm,Smaxis decreased by 35%– 45%.When the slots width is changed from 8 mm to 12 mm,Smaxis decreased from–3% to 12%.

    From the above results,it can be seen that both the slots length and the slots width have significant influences on Mfand Md,but Smaxis more sensitive to the slots length than the slots width.What’s more,an increase in Mdand Mfdue to a parameter change often leads to an increase in Smaxas well.But in some ways,Md,Mfand Smaxmay conflict with each other.

    6 Conclusions

    (1)The surrogate models of Mf,Mdand Smaxare obtained by RSM.These empirical equations is proven to be precise for this study.

    (2)The optimal design is obtained by RSM polynomials for the TWTF hinge,this configuration has lower maximum stress,greater peak moment and smoother stress distribution.

    (3)For the TWTF hinge,with greater slots length and slots width,Mfand Mdare generally lower.A greater slots length can lead to a much lower Smax,but the relationship is not observed between the slot width and the Smax.

    [1]MARKS G W,REILLY M T,HUFF R L.The lightweight deployable antennas for the MARSIS experiment on the Mars express spacecraft[C]//Proceeding of the 36th Aerospace Mechanisms Symposium,Glenn Research Center,NASA CP-2002-211 506,April 2002:183–196.

    [2]MANSFIELD E H.Large-deflexion torsion and flexure of initially curved strips[J].Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1973,334(1598):279–298.

    [3]SEFFEN K A,PELLEGRINO S.Deployment dynamics of tape springs[J].Proceedings of the Royal Society of London Series A,1999,455(1983):1003–1048.

    [4]SEFFEN K A.On the behavior of folded tape-springs[J].Journal of Applied Mechanics-Transactions of the ASME,2001,68(3):369–375.

    [5]SEFFEN K A,YOU ZHONG,PELLEGRINO S.Folding and deployment of curved tape springs[J].International Journal of Mechanical Sciences,2000,42:2055–2073.

    [6]YEE J C H,PELLEGRINO S.Composite tube hinges[J].Journal of Aerospace Engineering,2005,18(4):224–231.

    [7]SILVER M.Buckling of curved shells with free edges under multi-axis loading[D].Colorado:University of Colorado,2005.

    [8]WARREN P A,SILVER M J,DOBSON B J,et al.Experimental characterization of deployable outer barrel assemblies for large space telescopes[C]//Proceedings of SPIE,UV/Optical/IR Space Telescopes and Instruments:Innovative Technologies and Concepts VI 886 008,October 29,2013.

    [9]BOESCH C,PEREIRA C,JOHN R,et al.Ultra light self-motorized mechanism for deployment of light weight space craft appendages[C]//Proceedings of 39th Aerospace Mechanisms Symposium,Newport,NASA Marshall Space Flight Center,May,7–9,2008.

    [10]LANE S A,MURPHEY T W,ZATMAN M.Overview of the innovative space-based radar antenna technology program[J].Journal of Spacecraft and Rockets,2011,48(1):135–145.

    [11]WALKER S J I,AGLIETTI G.Study the dynamics of threedimensional tape spring folds[J].Journal of AIAA,2004,42(4):850–856.

    [12]WALKER S J I,AGLIETTI G.Experimental Investigation of tape springs folded in three dimensions[J].Journal of AIAA,2006,44(1):151–159.

    [13]KWOK K.Mechanics of visoelastic thin-walled structures[D].California:California Institute of Technology,2013.

    [14]RIMROTT F P J,FRITSCHE G.Fundamentals of stem mechanics[C]//Pellegrino S and Guest S D,eds,IUTAM-IASS Symposium on Deployable Structures:Theory and Applications,Cambridge,UK,September,1998:321–333.

    [15]BLOCK J,STRAUBEL M,WIEDEMANN M.Ultralight deployable booms for solar sails and other large gossamer structures in space[J].Acta Astronautica,2011,68(7–8):984–992.

    [16]SOYKASAP O,PELLEGRINO S,HOWARD P,et al.Folding large antenna tape spring[J].Journal of Spacecraft and Rockets,2008,45(3):560–567.

    [17]SOYKASAP O,KARAKAYA S,TURKMEN D.Curved large tape springs for an ultra-thin shell deployable reflector[J].Journal of Reinforced Plastics and Composites,2012,31(10):691–703.

    [18]SOYKASAP O,WATT A,PELLEGRINO S.New deployable reflector concept[C]//Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference,Palm Springs,California,April,19–22,2004:1574.

    [19]MARKS G.Flattenable foldable boom hinge:USA,6343442[P].2002-02-05.

    [20]MOBREM M,ADAMS D S.Deployment analysis of lenticular jointed antennas onboard the mars express spacecraft[J].Journal of Spacecraft and Rockets,2009,46(2):394–402.

    [21]SILVER M J,HINKLE J D,PETERSON L D.Modeling of snap-back bending response of doubly slit cylindrical shells[C]//Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Palm Springs,California,April,19–22,2004:1820.

    [22]YEE J C H.Thin CFRP composite deployable structures[D].Cambridge:University of Cambridge,2006.

    [23]SOYKASAP O.Deployment analysis of a self-deployable composite boom[J].Composite Structures,2009,89(3):374–381.

    [24]MALLIKARACHCHI H M Y C,PELLEGRINO S.Quasi-static folding and deployment of ultrathin composite tape-spring hinges[J].Journal of Spacecraft and Rockets,2011b,48(1):187–198.

    [25]MALLIKARACHCHI H M Y C,PELLEGRINO S.Optimized designs of composite booms with integral tape-spring hinges[C]//Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,Orlando,Florida,April,12–15,2010:1–16.

    [26]BOX G E P,WILSON K B.On the experimental attainment of optimum conditions[J].Journal of the Royal Statistical Society,1951,13:1–45.

    [27]LIU Yucheng.Design optimization of taped thin-walled square tubes[J].International Journal of Crashworthiness,2008,13(5):543–550.

    [28]LI Meng,DENG Zongquan,LIU Rongqiang,et al.Crashworthiness design optimization of metal honeycomb energy absorber used in lunar lander[J].International Journal of crashworthiness,2011,16(4):411–419.

    [29]QI Chang,YANG Shu,DONG Fangliang.Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading[J].Thin-walled Structures,2012,59,103–119.

    [30]LI Meng,DENG Zongquan,GUO Hongwei,et al.Crashworthiness analysis on alternative square honeycomb structure under axial loading[J].Chinese Journal of Mechanical Engineering,2013,26(4):784–792.

    [31]GUO Hongwei,ZHANG Jing,LIU Rongqiang,et al.Effects of joint on dynamics of space deployable structure[J].Chinese Journal of Mechanical Engineering,2013,26(5):861–872.

    [32]LINDMAN H R.Analysis of variance in experimental design[M],Springer,New York,1992.

    [33]MYERS R H,MONTGOMERY D C.Response surface methodology:process and product optimization using designed experiments[M].New York:Wiley,1995.

    国产精品免费一区二区三区在线| 真实男女啪啪啪动态图| 欧美绝顶高潮抽搐喷水| 大型黄色视频在线免费观看| 一二三四社区在线视频社区8| 欧美成人一区二区免费高清观看| 婷婷丁香在线五月| 午夜免费男女啪啪视频观看 | 欧美乱妇无乱码| 90打野战视频偷拍视频| 国产高清视频在线观看网站| 免费电影在线观看免费观看| 亚洲av.av天堂| 亚洲综合色惰| 亚洲av美国av| 日本精品一区二区三区蜜桃| 97超视频在线观看视频| 欧美黄色片欧美黄色片| 长腿黑丝高跟| 听说在线观看完整版免费高清| 99国产综合亚洲精品| 国产伦人伦偷精品视频| 欧美成人一区二区免费高清观看| 99热6这里只有精品| 日韩欧美在线二视频| 日韩国内少妇激情av| 精品人妻1区二区| 国产一区二区亚洲精品在线观看| 一级黄片播放器| 看片在线看免费视频| 精品一区二区三区人妻视频| 精品久久国产蜜桃| 亚洲国产色片| 色综合婷婷激情| 国产三级中文精品| 听说在线观看完整版免费高清| 热99re8久久精品国产| 日日摸夜夜添夜夜添小说| 国产免费一级a男人的天堂| 亚洲av免费在线观看| 亚洲五月婷婷丁香| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 久久久久久久午夜电影| 美女高潮的动态| netflix在线观看网站| 91字幕亚洲| 精品久久久久久久久av| 国产人妻一区二区三区在| 精品久久久久久成人av| 18禁裸乳无遮挡免费网站照片| av国产免费在线观看| 国产精品av视频在线免费观看| 美女xxoo啪啪120秒动态图 | 国产亚洲欧美98| 久久草成人影院| 国产亚洲欧美98| 久久精品国产亚洲av天美| 国产高清三级在线| 高潮久久久久久久久久久不卡| 高潮久久久久久久久久久不卡| 波多野结衣巨乳人妻| 亚洲欧美日韩东京热| 麻豆成人av在线观看| 国产爱豆传媒在线观看| 亚洲国产精品sss在线观看| 久久这里只有精品中国| 精品午夜福利在线看| 亚洲狠狠婷婷综合久久图片| 啪啪无遮挡十八禁网站| 能在线免费观看的黄片| 人妻久久中文字幕网| 中文字幕高清在线视频| 久久国产精品影院| 国产av不卡久久| 日韩亚洲欧美综合| 高潮久久久久久久久久久不卡| 亚洲成人久久性| 亚洲国产欧美人成| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 一进一出好大好爽视频| www.www免费av| 国产 一区 欧美 日韩| 夜夜看夜夜爽夜夜摸| 日韩欧美三级三区| 成人性生交大片免费视频hd| 9191精品国产免费久久| 精品久久久久久久久亚洲 | 欧美成人免费av一区二区三区| 成人高潮视频无遮挡免费网站| 日韩中字成人| 日韩欧美精品免费久久 | 嫩草影院精品99| 夜夜夜夜夜久久久久| 国产精品99久久久久久久久| 久久精品国产自在天天线| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 在线天堂最新版资源| 欧美黑人欧美精品刺激| bbb黄色大片| 99久久99久久久精品蜜桃| 国产三级在线视频| 97热精品久久久久久| 亚洲人成网站高清观看| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 男人狂女人下面高潮的视频| 丁香六月欧美| 久久久久亚洲av毛片大全| 国产精品女同一区二区软件 | 亚洲欧美日韩东京热| 男女做爰动态图高潮gif福利片| 一区二区三区免费毛片| 成人精品一区二区免费| 男女下面进入的视频免费午夜| 中国美女看黄片| 天堂网av新在线| 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 亚洲电影在线观看av| 国产国拍精品亚洲av在线观看| 国内精品久久久久久久电影| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 中国美女看黄片| 国产高清三级在线| 最好的美女福利视频网| 一本久久中文字幕| 9191精品国产免费久久| 亚洲av.av天堂| 午夜精品在线福利| 亚洲一区二区三区不卡视频| www.色视频.com| 欧美成狂野欧美在线观看| 波多野结衣巨乳人妻| 亚洲国产精品sss在线观看| 色精品久久人妻99蜜桃| 99热这里只有是精品50| 午夜免费成人在线视频| 色播亚洲综合网| 国产综合懂色| 最好的美女福利视频网| 高清毛片免费观看视频网站| 国产熟女xx| av欧美777| 男人的好看免费观看在线视频| 欧美最黄视频在线播放免费| 亚洲自拍偷在线| 久久午夜福利片| 啦啦啦观看免费观看视频高清| 国产av在哪里看| 91久久精品国产一区二区成人| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 亚洲七黄色美女视频| 天堂影院成人在线观看| 久久国产乱子伦精品免费另类| 久久天躁狠狠躁夜夜2o2o| 啦啦啦韩国在线观看视频| 国产三级在线视频| 午夜福利视频1000在线观看| 亚洲一区二区三区不卡视频| 欧美精品国产亚洲| 日本黄色片子视频| 国产极品精品免费视频能看的| 露出奶头的视频| 色av中文字幕| 亚洲 国产 在线| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 成人性生交大片免费视频hd| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 国产久久久一区二区三区| 色哟哟哟哟哟哟| 免费观看人在逋| www.熟女人妻精品国产| 亚洲自拍偷在线| 久久久久九九精品影院| 成人永久免费在线观看视频| 亚洲av成人av| 午夜福利成人在线免费观看| 1000部很黄的大片| 夜夜爽天天搞| 国产精品人妻久久久久久| 亚洲成人中文字幕在线播放| 精品一区二区三区视频在线| 窝窝影院91人妻| 在线观看免费视频日本深夜| 欧美性猛交╳xxx乱大交人| 国产人妻一区二区三区在| 人人妻人人看人人澡| 97碰自拍视频| 欧美又色又爽又黄视频| 人妻制服诱惑在线中文字幕| 动漫黄色视频在线观看| av欧美777| 国产黄色小视频在线观看| 国产人妻一区二区三区在| 午夜精品一区二区三区免费看| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6 | 美女xxoo啪啪120秒动态图 | 村上凉子中文字幕在线| 亚洲狠狠婷婷综合久久图片| 97超级碰碰碰精品色视频在线观看| 中文字幕高清在线视频| 亚洲精品在线观看二区| 乱人视频在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 国产成人av教育| 波野结衣二区三区在线| 制服丝袜大香蕉在线| 亚洲欧美日韩高清在线视频| 美女大奶头视频| 欧美成狂野欧美在线观看| 一个人看视频在线观看www免费| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 1000部很黄的大片| 性插视频无遮挡在线免费观看| 丁香六月欧美| 亚洲综合色惰| 亚洲久久久久久中文字幕| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 精品久久久久久久人妻蜜臀av| 国产免费av片在线观看野外av| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 91在线精品国自产拍蜜月| 成人一区二区视频在线观看| 亚洲,欧美精品.| 亚洲精品456在线播放app | 成年女人永久免费观看视频| 最近最新中文字幕大全电影3| 午夜影院日韩av| 欧美乱妇无乱码| 黄色一级大片看看| 深爱激情五月婷婷| 午夜视频国产福利| 国产高清视频在线观看网站| 一本精品99久久精品77| 亚洲精品日韩av片在线观看| 亚洲人成伊人成综合网2020| 成年女人看的毛片在线观看| 性色avwww在线观看| 国产伦一二天堂av在线观看| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 日韩精品青青久久久久久| 亚洲欧美清纯卡通| 亚洲经典国产精华液单 | 久久国产精品影院| 俄罗斯特黄特色一大片| 美女被艹到高潮喷水动态| 他把我摸到了高潮在线观看| 亚洲久久久久久中文字幕| 午夜福利在线在线| 在现免费观看毛片| 99视频精品全部免费 在线| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 亚洲18禁久久av| 日本三级黄在线观看| 午夜福利18| 精品一区二区三区视频在线| 国产视频一区二区在线看| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 国产v大片淫在线免费观看| 久久精品人妻少妇| 一级作爱视频免费观看| 国产免费一级a男人的天堂| 中国美女看黄片| 欧美精品啪啪一区二区三区| 国内毛片毛片毛片毛片毛片| 搡老熟女国产l中国老女人| 国产黄a三级三级三级人| 黄色丝袜av网址大全| 亚洲国产精品999在线| 狂野欧美白嫩少妇大欣赏| 熟女电影av网| 中国美女看黄片| 黄色配什么色好看| 男女之事视频高清在线观看| 搞女人的毛片| 天堂动漫精品| 国产色爽女视频免费观看| 男女下面进入的视频免费午夜| 成年免费大片在线观看| 午夜福利高清视频| av女优亚洲男人天堂| 国语自产精品视频在线第100页| 国产精品女同一区二区软件 | 99国产极品粉嫩在线观看| 国产人妻一区二区三区在| 成年女人看的毛片在线观看| 久久性视频一级片| 亚洲人成网站在线播放欧美日韩| 最后的刺客免费高清国语| 亚洲色图av天堂| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 亚洲三级黄色毛片| 国产精品一区二区三区四区久久| 久久久久精品国产欧美久久久| 在线观看一区二区三区| 欧美另类亚洲清纯唯美| 欧美bdsm另类| 亚洲人成网站在线播| 美女免费视频网站| 国产v大片淫在线免费观看| 亚洲美女黄片视频| 欧美黄色淫秽网站| 亚洲国产精品999在线| 欧美色欧美亚洲另类二区| 亚洲 国产 在线| 简卡轻食公司| 91字幕亚洲| 精品熟女少妇八av免费久了| 久久精品人妻少妇| aaaaa片日本免费| 亚洲专区中文字幕在线| 亚洲人与动物交配视频| 好男人电影高清在线观看| 真人一进一出gif抽搐免费| 成年女人看的毛片在线观看| 精品欧美国产一区二区三| 亚洲精品在线美女| 麻豆成人午夜福利视频| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 此物有八面人人有两片| 两人在一起打扑克的视频| 嫩草影视91久久| 简卡轻食公司| 日韩欧美国产一区二区入口| 97超级碰碰碰精品色视频在线观看| 亚洲av成人不卡在线观看播放网| 在线免费观看不下载黄p国产 | 乱人视频在线观看| 内射极品少妇av片p| 超碰av人人做人人爽久久| 99久久99久久久精品蜜桃| 露出奶头的视频| 午夜免费男女啪啪视频观看 | 天堂√8在线中文| 怎么达到女性高潮| 国产一区二区在线av高清观看| 免费人成在线观看视频色| 欧美精品国产亚洲| 国产在线男女| 极品教师在线免费播放| 一个人看视频在线观看www免费| 午夜亚洲福利在线播放| 成人国产综合亚洲| 嫩草影院入口| 亚洲国产高清在线一区二区三| 男人的好看免费观看在线视频| 成人特级黄色片久久久久久久| 高清毛片免费观看视频网站| 我的老师免费观看完整版| 久久午夜亚洲精品久久| 老熟妇仑乱视频hdxx| 日韩 亚洲 欧美在线| 日韩人妻高清精品专区| 日本黄色片子视频| 国产不卡一卡二| 亚洲久久久久久中文字幕| 久久精品国产亚洲av香蕉五月| 国内久久婷婷六月综合欲色啪| 99久久精品热视频| 亚洲人成网站高清观看| 国产一区二区激情短视频| 日日摸夜夜添夜夜添小说| 色综合站精品国产| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6 | 日韩欧美 国产精品| 99精品久久久久人妻精品| 午夜福利高清视频| 成年免费大片在线观看| 男人舔女人下体高潮全视频| 国产在视频线在精品| 欧美黄色片欧美黄色片| 看片在线看免费视频| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 69av精品久久久久久| 亚洲色图av天堂| 日韩高清综合在线| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 欧美3d第一页| 日本 av在线| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 小蜜桃在线观看免费完整版高清| 国产黄色小视频在线观看| 国产精品一区二区三区四区免费观看 | 国产乱人伦免费视频| 一区二区三区免费毛片| 三级国产精品欧美在线观看| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 国产精品久久久久久久久免 | 97超级碰碰碰精品色视频在线观看| 精品久久久久久,| 欧美日韩亚洲国产一区二区在线观看| 宅男免费午夜| 天堂av国产一区二区熟女人妻| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区三区| 欧美黑人巨大hd| 久久香蕉精品热| 国产精品久久久久久久久免 | 老司机午夜十八禁免费视频| 日韩中字成人| 老女人水多毛片| 亚洲精品粉嫩美女一区| 91九色精品人成在线观看| 最近中文字幕高清免费大全6 | 久久精品人妻少妇| 99久国产av精品| 精品一区二区免费观看| 国产精品电影一区二区三区| 美女xxoo啪啪120秒动态图 | bbb黄色大片| 无遮挡黄片免费观看| 亚洲avbb在线观看| 国产高清视频在线观看网站| 在线播放无遮挡| 国产高清有码在线观看视频| 一区二区三区激情视频| bbb黄色大片| 亚洲国产精品sss在线观看| 久久伊人香网站| 亚洲av免费在线观看| 成人精品一区二区免费| 亚洲欧美日韩卡通动漫| 999久久久精品免费观看国产| 真人一进一出gif抽搐免费| 精品一区二区三区人妻视频| 麻豆av噜噜一区二区三区| 热99在线观看视频| 脱女人内裤的视频| 免费观看人在逋| 国产黄片美女视频| 午夜精品在线福利| 久久人人精品亚洲av| 国产精品亚洲av一区麻豆| 人人妻,人人澡人人爽秒播| 成人性生交大片免费视频hd| 一级a爱片免费观看的视频| 成年免费大片在线观看| 久久人人精品亚洲av| 日本撒尿小便嘘嘘汇集6| av欧美777| 亚洲欧美日韩高清在线视频| 我要搜黄色片| 麻豆成人av在线观看| 国产人妻一区二区三区在| 亚洲国产精品sss在线观看| 国产在视频线在精品| 久久久久久国产a免费观看| 伊人久久精品亚洲午夜| 久久性视频一级片| 欧美日本亚洲视频在线播放| 级片在线观看| 噜噜噜噜噜久久久久久91| 成人国产综合亚洲| av女优亚洲男人天堂| 亚洲国产精品sss在线观看| 一本精品99久久精品77| 90打野战视频偷拍视频| 一个人看的www免费观看视频| 成年人黄色毛片网站| av在线观看视频网站免费| 蜜桃久久精品国产亚洲av| 久久人人爽人人爽人人片va | 久久久久久久午夜电影| 亚洲av五月六月丁香网| 别揉我奶头~嗯~啊~动态视频| 美女大奶头视频| 国产高清三级在线| 我要搜黄色片| 动漫黄色视频在线观看| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 日本 欧美在线| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 国产免费男女视频| 毛片女人毛片| 成人三级黄色视频| 国内精品久久久久精免费| 性色av乱码一区二区三区2| 亚洲人成网站在线播放欧美日韩| 97超级碰碰碰精品色视频在线观看| www.色视频.com| 久久久久久久久中文| 亚洲精品影视一区二区三区av| 99久久久亚洲精品蜜臀av| 亚洲第一欧美日韩一区二区三区| 精品午夜福利在线看| 成人永久免费在线观看视频| 午夜免费激情av| 国产三级在线视频| 又黄又爽又刺激的免费视频.| 我要看日韩黄色一级片| 久久国产精品影院| aaaaa片日本免费| 久久精品国产清高在天天线| 国产精品人妻久久久久久| 欧美成人一区二区免费高清观看| 午夜福利在线在线| 天堂影院成人在线观看| 美女xxoo啪啪120秒动态图 | 首页视频小说图片口味搜索| 亚洲av美国av| 天天一区二区日本电影三级| av女优亚洲男人天堂| 久久精品久久久久久噜噜老黄 | 自拍偷自拍亚洲精品老妇| 午夜久久久久精精品| 嫩草影院精品99| 在线天堂最新版资源| 欧美丝袜亚洲另类 | 国产伦人伦偷精品视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免 | 91麻豆av在线| 少妇的逼好多水| 黄色配什么色好看| 日韩 亚洲 欧美在线| 国产免费av片在线观看野外av| 免费av观看视频| a在线观看视频网站| 日本与韩国留学比较| 亚洲在线自拍视频| 嫩草影院新地址| 99久久久亚洲精品蜜臀av| 国产成人啪精品午夜网站| 长腿黑丝高跟| h日本视频在线播放| 精品人妻熟女av久视频| 热99在线观看视频| 亚洲成av人片在线播放无| 午夜老司机福利剧场| 久久人人精品亚洲av| 中文字幕久久专区| 欧美黑人巨大hd| 日本五十路高清| 亚洲在线自拍视频| 91久久精品国产一区二区成人| 97碰自拍视频| 真实男女啪啪啪动态图| 日日干狠狠操夜夜爽| 亚洲 国产 在线| 中文在线观看免费www的网站| 午夜亚洲福利在线播放| 国产爱豆传媒在线观看| av黄色大香蕉| 性色av乱码一区二区三区2| ponron亚洲| av黄色大香蕉| 天美传媒精品一区二区| 日韩人妻高清精品专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产高清三级在线| 欧美激情在线99| 国产精品影院久久| 亚洲在线自拍视频| 一个人观看的视频www高清免费观看| 亚洲精品在线观看二区| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 亚洲精品在线观看二区| 午夜精品一区二区三区免费看| 夜夜爽天天搞| 午夜影院日韩av| 国产欧美日韩精品一区二区| 一区二区三区免费毛片| 亚洲国产精品sss在线观看| 看片在线看免费视频| 禁无遮挡网站| 精品国产三级普通话版| 国产伦一二天堂av在线观看| 精品人妻熟女av久视频| 日韩欧美三级三区| 白带黄色成豆腐渣| 久久99热6这里只有精品| 国产成人福利小说| 又紧又爽又黄一区二区| 亚洲欧美精品综合久久99|