• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    潛水器用光纖線團(tuán)應(yīng)力分布及影響因素

    2021-06-24 06:56:52湯偉江劉衛(wèi)東高卓張凱趙培東
    兵工學(xué)報(bào) 2021年5期
    關(guān)鍵詞:線團(tuán)端板徑向

    湯偉江,劉衛(wèi)東,高卓,張凱,趙培東

    (1.西北工業(yè)大學(xué) 航海學(xué)院,陜西 西安 710072;2.中國(guó)船舶集團(tuán)有限公司 第705研究所,陜西 西安 710077;3.西北工業(yè)大學(xué) 水下信息與控制重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710072)

    0 引言

    現(xiàn)有可用的水下通信方式主要包括電磁波通信、聲通信、無(wú)線光通信及光纖通信等。與其他通信方式相比,光纖通信具有傳輸距離遠(yuǎn)、信息傳輸速率高、體積小、質(zhì)量輕等優(yōu)點(diǎn)[1],特別適合有大容量信息傳輸需求的場(chǎng)合。近年來(lái),利用深海潛水器進(jìn)行試驗(yàn)和深??瓶迹枰獙⒁曨l等大容量信息實(shí)時(shí)回傳給母船,母船也會(huì)根據(jù)需要對(duì)潛水器進(jìn)行遙控操作[2],采用水下動(dòng)態(tài)有線通信技術(shù),在潛水器和母船上分別攜帶一個(gè)光纖線團(tuán),在潛水器航行時(shí),兩側(cè)線團(tuán)內(nèi)光纖微纜受流體作用分別布放,建立潛水器與母船間的動(dòng)態(tài)通信鏈路(見圖1)。光纖線團(tuán)采用軸向內(nèi)放線方式,由單根光纖微纜分層雙向緊密繞制而成,使用時(shí)光纖微纜從線團(tuán)內(nèi)腔順次逐匝逐層布放,其布放性能直接影響信道構(gòu)建的可靠性,是由線團(tuán)繞制質(zhì)量直接決定的。

    圖1 潛水器光纖有線通信示意圖Fig.1 Schematic diagram of fiber-optic cable communication of unmanned submersible vehicle

    纜索纏繞力學(xué)、成型性能以及影響因素方面的研究成果較多。制導(dǎo)光纜纏繞方面,馬成舉等建立了卷盤層間壓強(qiáng)模型,考慮光纜、卷盤的徑向變形因素,采用光柵傳感技術(shù)對(duì)繞線過程光纜層壓強(qiáng)進(jìn)行試驗(yàn)驗(yàn)證[3];胡君良等對(duì)纏繞過程光纜和線軸受力情況進(jìn)行了分析[4],并根據(jù)纏繞時(shí)光纜的應(yīng)變情況計(jì)算線包傳輸附加損耗[5]。復(fù)合增強(qiáng)材料纏繞方面主要研究?jī)?nèi)襯和復(fù)合材料的各向應(yīng)力狀態(tài),分析內(nèi)壓、熱應(yīng)變等載荷以及內(nèi)襯厚度、纏繞角度、纏繞張力、纖維體積含量等結(jié)構(gòu)工藝參數(shù)對(duì)應(yīng)力、應(yīng)變、變形分布的影響[6-13],優(yōu)化設(shè)計(jì)及工藝,提高承壓件性能。光纖陀螺中光纖環(huán)的纏繞受纏繞張力影響較大,通過建立光纖環(huán)纏繞受力模型,分析纏繞張力對(duì)光纖環(huán)應(yīng)力影響,提出合理的纏繞張力控制方法并進(jìn)行試驗(yàn)驗(yàn)證[14-16]。起重機(jī)等重型機(jī)械通過卷筒纏繞鋼絲繩提升重物,分析鋼絲繩纏繞過程的張力變化以及卷筒和端板的受力情況,優(yōu)化卷筒結(jié)構(gòu),提高可靠性和安全性[17-19]。與上述研究相比,潛水器用光纖線團(tuán)在結(jié)構(gòu)和繞制方式上有明顯差異。潛水器用光纖線團(tuán)(見圖2)采用單根光纖微纜精密緊密纏繞,光纖微纜層間、匝間均接觸,且存在兩側(cè)端板的結(jié)構(gòu)限制。線團(tuán)繞制時(shí)需對(duì)繞入的光纖微纜施加一定的預(yù)緊力,在這個(gè)力作用下光纖線團(tuán)層與層、匝與匝之間的光纖微纜會(huì)相互擠壓,使內(nèi)層光纖微纜產(chǎn)生放松效應(yīng),并對(duì)兩側(cè)端板產(chǎn)生擠壓,在每層光纖微纜徑向、軸向擠壓雙重作用下,光纖線團(tuán)內(nèi)部應(yīng)力分布狀態(tài)較為復(fù)雜,呈非線性。上述纏繞力學(xué)研究成果無(wú)法直接應(yīng)用于潛水器用光纖線團(tuán)力學(xué)分析及研究。

    圖2 光纖線團(tuán)及繞制結(jié)構(gòu)Fig.2 Fiber-optic coil and winding mechanism

    光纖線團(tuán)的應(yīng)力分布狀態(tài)是影響光纖線團(tuán)繞制質(zhì)量的重要因素,決定其使用及貯存壽命[20]。在繞制機(jī)構(gòu)結(jié)構(gòu)確定的前提下,通過改變繞制預(yù)緊力和光纖微纜自身彈性參數(shù)能夠有效調(diào)整光纖線團(tuán)的應(yīng)力分布,改變應(yīng)力線型和幅值,使其趨于合理。因此,研究繞制張力和光纖微纜彈性參數(shù)對(duì)光纖線團(tuán)應(yīng)力分布的影響,對(duì)于光纖微纜結(jié)構(gòu)和光纖線團(tuán)繞制工藝的優(yōu)化設(shè)計(jì)及改進(jìn)具有重要參考價(jià)值。

    本文基于潛水器用光纖線團(tuán)兩側(cè)端板限制的結(jié)構(gòu)形式,在計(jì)算光纖線團(tuán)應(yīng)力時(shí)除了分析光纖微纜沿線團(tuán)的徑向變形,同時(shí)還考慮光纖微纜沿線團(tuán)的軸向變形,分別對(duì)光纖微纜徑向承壓和受端板限制的軸向擠壓進(jìn)行受力分析,以光纖微纜沿線團(tuán)徑向變形與其應(yīng)力的關(guān)系以及沿線團(tuán)軸向變形與端板變形關(guān)系聯(lián)立形成光纖線團(tuán)應(yīng)力解算方程,在此基礎(chǔ)上對(duì)光纖微纜軸向、截面變形涉及的軸向彈性模量、徑向彈性模量和徑向彈性系數(shù)等彈性參數(shù)進(jìn)行定義和建模分析。以潛水器用某型光纖線團(tuán)為對(duì)象,分別對(duì)光纖線團(tuán)應(yīng)力分布隨光纖微纜彈性參數(shù)和繞制張力的變化規(guī)律進(jìn)行仿真研究,對(duì)光纖線團(tuán)應(yīng)力分布以及各參數(shù)對(duì)線團(tuán)壽命、結(jié)構(gòu)穩(wěn)定性的影響機(jī)理做出了解釋。

    1 光纖線團(tuán)內(nèi)部應(yīng)力分布

    光纖微纜在繞制工裝內(nèi)分層密繞,下層光纖微纜承受上層光纖微纜的壓力,其截面發(fā)生沿線團(tuán)的徑向壓縮變形,使下層光纖微纜周向應(yīng)變減小,應(yīng)力減小,對(duì)其內(nèi)層光纖微纜的壓力也減小,而兩側(cè)端板的存在,限制光纖微纜沿線團(tuán)軸向的截面變形,減小光纖微纜的徑向壓縮變形,因此各層光纖微纜的應(yīng)力與所承受壓力并不是線性相關(guān)的。

    當(dāng)前繞入光纖線團(tuán)的光纖微纜受力如圖3所示,對(duì)下層光纖微纜施加的壓力dFp為

    圖3 光纖微纜受力Fig.3 Force analysis of fiber-optic micro-cable

    (1)

    式中:dl為光纖微纜微元的長(zhǎng)度;dβ為微元對(duì)應(yīng)的張角;T為繞制張力;R為繞制半徑;dFs為微元所受的支持力。

    光纖線團(tuán)光纖微纜間作用力如圖4所示。圖4中:Fc為層間光纖微纜接觸點(diǎn)擠壓力;Ff為層間光纖微纜接觸點(diǎn)摩擦力;Fe為同層光纖微纜匝間沿線團(tuán)軸向的擠壓力;Fo,r為光纖微纜受外層作用力沿線團(tuán)徑向的分量;Fo,z為光纖微纜受外層作用力沿線團(tuán)軸向的分量;α為光纖微纜的堆疊角。

    圖4 光纖微纜間作用力Fig.4 Force between the fiber-optic micro-cables

    光纖線團(tuán)光纖微纜間作用力沿線團(tuán)徑向、軸向進(jìn)行分解,即

    (2)

    式中:μs為光纖微纜間靜摩擦系數(shù)。

    光纖線團(tuán)繞制時(shí),各層光纖微纜均會(huì)對(duì)內(nèi)層施加壓力。當(dāng)光纖線團(tuán)繞制n層時(shí),第i層光纖微纜所受壓力是其外層各層光纖微纜張力沿線團(tuán)徑向的合力。第n層光纖微纜繞制時(shí)對(duì)n-1層施加的壓力為Tdβ,則第i層光纖微纜所承受的壓力變化量為

    (3)

    圖5 光纖微纜截面受力狀態(tài)Fig.5 Force analysis of fiber-optic micro-cable section

    依據(jù)圖5和(2)式可得

    (4)

    (5)

    同樣地,可得到光纖微纜沿線團(tuán)軸向變形,即

    (6)

    光纖線團(tuán)的兩側(cè)端板限制各層光纖微纜沿線團(tuán)的軸向變形,使光纖微纜與端板之間存在軸向作用力。芯軸、繞制工裝與端板之間固連,繞制工裝的彈性模量遠(yuǎn)大于端板,分析時(shí)忽略繞制工裝的變形,而當(dāng)前層光纖微纜繞入時(shí)對(duì)端板無(wú)軸向力作用。

    在繞制工裝外徑Rt范圍內(nèi)(即Rm≤Ri≤Rt,Rm為芯軸外徑,Ri為第i層光纖微纜的半徑),端板受光纖微纜的軸向力作用而產(chǎn)生擠壓變形為

    (7)

    式中:Er為端板的彈性模量;Hr為端板厚度;nt為Rt對(duì)應(yīng)的光纜層數(shù);

    (8)

    (9)

    繞制工裝范圍以外端板受各層光纖微纜的軸向力而產(chǎn)生彎曲變形,依據(jù)圓形板對(duì)稱彎曲理論,光纖線團(tuán)繞制第n層時(shí)第i層光纖微纜軸向力作用下端板在半徑r處的撓度為

    (10)

    (11)

    (12)

    式中:Rj為第j層光纖微纜的半徑。

    則繞制第n層時(shí)第i層光纖微纜對(duì)應(yīng)端板處的彎曲變形為

    (13)

    不考慮芯軸的徑向變形,第i層光纖微纜在繞制第n層時(shí)應(yīng)力減小量與該層徑向變形相關(guān),即

    (14)

    (15)

    而該層光纖微纜的張力減小量為

    (16)

    式中:So為光纜截面面積。

    光纖微纜沿線包的軸向變形等于兩側(cè)端板對(duì)應(yīng)位置的變形之和,即

    (17)

    (14)式和(17)式聯(lián)立,即可求解繞制第n層時(shí)各層光纖微纜的應(yīng)力減小量。每層光纖微纜在后續(xù)層繞制時(shí)其應(yīng)力均會(huì)減小,在繞制第n層光纖微纜后,第i層光纖微纜的應(yīng)力為

    (18)

    式中:σT為繞制張力T作用下光纖微纜的拉伸應(yīng)力,σT=T/So.

    2 光纖微纜彈性參數(shù)及繞制時(shí)光纖微纜的變形

    光纖微纜彈性參數(shù)用于描述光纜軸向、徑向的彈性特性。如(14)式所示,繞制時(shí)光纖微纜的應(yīng)力變化與其軸向彈性模量Eo,z相關(guān)。光纖微纜由光纖和護(hù)套組成,光纖包括纖芯和包層,護(hù)套緊包在光纖上。Eo,z可經(jīng)拉伸試驗(yàn)獲取,也可通過(19)式近似計(jì)算。

    (19)

    式中:Ef、Ec、Es分別為纖芯、包層、護(hù)套的彈性模量;Sf、Sc、Ss分別為纖芯、包層、護(hù)套的截面積;So=Sf+Sc+Ss.

    要計(jì)算光纖線團(tuán)繞制時(shí)光纖微纜沿線團(tuán)徑向、軸向的變形量,需分析光纖微纜徑向受力與變形的關(guān)系以及光纖微纜沿線包徑向和軸向變形之間的關(guān)系,引入光纖微纜的徑向彈性參數(shù):徑向彈性模量和徑向彈性系數(shù)。徑向彈性特性如圖6所示。

    圖6 徑向彈性特性Fig.6 Radial elastic property

    如圖6所示,定義光纖微纜單位長(zhǎng)度上的壓力與沿壓力方向的截面直徑減小量的比值為徑向彈性模量Eo,r,即

    (20)

    式中:l為受壓光纖微纜長(zhǎng)度。在壓力Fo,r作用下,光纖微纜沿壓力方向截面直徑由do變化為do,r.

    壓力垂直方向的光纖微纜截面直徑增加量與壓力方向的截面直徑減小量的比值定義為徑向彈性系數(shù)Wo,r,即

    (21)

    光纖微纜沿與壓力垂直方向截面直徑由do變化為do,z.

    光纖微纜的徑向彈性模量和彈性系數(shù)可通過有限元仿真計(jì)算獲得,將光纖微纜夾持在兩個(gè)壓塊之間,上壓塊施加壓力,下壓塊下表面固定,光纖微纜各層間采用粘合約束(見圖7),測(cè)量施加壓力后光纖微纜沿壓力方向和垂直壓力方向的直徑變化,從而得出光纖微纜的徑向彈性參數(shù)。

    圖7 徑向彈性特性分析模型Fig.7 Analysis model of radial elastic property

    (22)

    式中:dli為張角dβ對(duì)應(yīng)的第i層光纖微纜微元的長(zhǎng)度,dli=Ridβ.

    (23)

    綜上所述,橋梁大體積混凝土承臺(tái)施工的溫控措施對(duì)工程質(zhì)量起著非常重要的作用。為有效防止溫度裂縫產(chǎn)生,保證大體積承臺(tái)混凝土施工質(zhì)量,做好溫度控制,降低水化熱是橋梁承臺(tái)施工的關(guān)鍵。通過分析本工程的施工控制可知,通過嚴(yán)格控制混凝土澆筑溫度、降低水泥水化熱、混凝土養(yǎng)生、埋設(shè)冷卻管降溫、采用科學(xué)的監(jiān)測(cè)方法、合理布置監(jiān)測(cè)點(diǎn)、注意監(jiān)測(cè)頻率以及加強(qiáng)監(jiān)控與反饋等措施,可以有效控制溫度裂縫,保證橋梁大體積混凝土承臺(tái)施工順利完成,確保工程施工質(zhì)量。

    (24)

    (25)

    (26)

    (27)

    (28)

    3 光纖線團(tuán)應(yīng)力分布影響分析

    (14)式和(17)式聯(lián)立,可得到形如(29)式的多元線性方程組,用于求解第n層繞制時(shí)各層光纖微纜的應(yīng)力和軸向擠壓力增量。

    (29)

    光纖線團(tuán)某層光纖微纜的應(yīng)力與后續(xù)層繞制導(dǎo)致該層光纖微纜的應(yīng)力減小量相關(guān)(見(18)式),各參數(shù)對(duì)光纖線團(tuán)應(yīng)力分布的影響無(wú)法直接從模型中獲得。

    當(dāng)繞制機(jī)構(gòu)結(jié)構(gòu)參數(shù)確定時(shí),光纖線團(tuán)應(yīng)力分布由光纖微纜彈性特性和繞制張力決定,當(dāng)Eo,z、Eo,r、Wo,r、T中任一參數(shù)改變時(shí),光纖線團(tuán)的應(yīng)力線型和幅值隨之改變。為揭示光纖線團(tuán)應(yīng)力分布隨各影響因素的變化規(guī)律,分別對(duì)各參數(shù)變化時(shí)線團(tuán)應(yīng)力進(jìn)行仿真分析。仿真參數(shù)見表1,繞制層數(shù)為100層。

    表1 仿真參數(shù)Tab.1 Simulation parameters

    3.1 光纖微纜彈性特性的影響

    3.1.1 軸向彈性模量

    設(shè)定繞制張力T=10 N,徑向彈性模量Eo,r=0.5 GPa,徑向彈性系數(shù)Wo,r=0.5,光纖線團(tuán)應(yīng)力σ分布隨光纖微纜軸向彈性模量Eo,z的變化情況如圖8所示。

    圖8 光纖線團(tuán)應(yīng)力分布與軸向彈性模量的關(guān)系Fig.8 Relationship between stress distribution of fiber-optic coil and axial elastic modulus of fiber-optic micro-cable

    不同軸向彈性模量Eo,z下光纖線團(tuán)應(yīng)力σ分布對(duì)比如圖9所示。對(duì)于不同光纖微纜軸向彈性模量,光纖線團(tuán)應(yīng)力分布線型和變化趨勢(shì)是相似的,均為類似“拋物線”線型,應(yīng)力隨層數(shù)i先減小,而斜率Δσ從負(fù)值逐漸增大,當(dāng)斜率Δσ為0時(shí)應(yīng)力σ達(dá)到最小值,然后應(yīng)力σ和斜率Δσ逐漸增大,直至最外層應(yīng)力σ達(dá)到最大,這是由徑向變形量和變形次數(shù)決定的。由圖9可知,光纖微纜軸向彈性模量越大,應(yīng)力曲線越陡,除最外層外同層光纖微纜應(yīng)力越小,最小應(yīng)力向內(nèi)層移動(dòng),相鄰層應(yīng)力變化量越大。這是由于軸向彈性模量增大,(29)式中A(n)的對(duì)角線系數(shù)減小,使繞制過程各層光纖微纜應(yīng)力減小量增大,導(dǎo)致各層光纖微纜的應(yīng)力減小。由ε=σ/Eo,z得出不同軸向彈性模量Eo,z下光纖線團(tuán)應(yīng)變?chǔ)艑?duì)比曲線(見圖10),光纖微纜軸向彈性模量越大,各層應(yīng)變均減小,應(yīng)變曲線下移且趨于平緩,相鄰層應(yīng)變變化量越小。這是由于軸向彈性模量增大使各層光纖微纜應(yīng)力減小量增大、徑向壓縮量減小,從而使光纖線團(tuán)各層光纖微纜的應(yīng)力減小,應(yīng)變曲線更平緩。

    圖9 不同軸向彈性模量下光纖線團(tuán)應(yīng)力分布對(duì)比Fig.9 Comparison of stress distributions of fiber-optic coil with different axial elastic modulii of fiber-optic micro-cable

    圖10 不同軸向彈性模量下光纖線團(tuán)應(yīng)變分布對(duì)比Fig.10 Comparison of strain distributions of fiber-optic coil with different axial elastic modulii of fiber-optic micro-cable

    圖11 光纖線團(tuán)浴盆特征參數(shù)隨軸向彈性模量的變化Fig.11 Variation of bathtub feature parameter of fiber-optic coil with axial elastic modulus of fiber-optic micro-cable

    3.1.2 徑向彈性模量

    設(shè)定繞制張力T=10 N,軸向彈性模量Eo,z=10 GPa,徑向彈性系數(shù)Wo,r=0.5.

    圖12反映了光纖線團(tuán)應(yīng)力分布隨光纖微纜徑向彈性模量的變化情況,具體對(duì)比見圖13. 由圖13可知,不同徑向彈性模量的光纜線包應(yīng)力分布線型和變化趨勢(shì)是相似的,均為類似“拋物線”線型,光纖微纜徑向彈性模量越大,應(yīng)力曲線越平緩,除最外層外同層光纖微纜應(yīng)力越大,最小應(yīng)力向外層移動(dòng),相鄰層應(yīng)力變化量越小。這是由于增大徑向彈性模量會(huì)使各層光纖微纜徑向變形量減小,從而使各層光纖微纜應(yīng)力減小量減小,導(dǎo)致各層光纖微纜應(yīng)力增大。光纖線團(tuán)浴盆特征參數(shù)隨徑向彈性模量的變化如圖14所示。由圖14可知,隨著光纖微纜徑向彈性模量的增大,浴盆特征參數(shù)先明顯減小,然后緩慢減小并趨近于1.

    圖12 光纖線團(tuán)應(yīng)力分布與徑向彈性模量的關(guān)系Fig.12 Relationship between stress distribution of fiber-optic coil and radial elastic modulus of fiber-optic micro-cable

    圖13 不同徑向彈性模量下光纖線團(tuán)應(yīng)力分布對(duì)比Fig.13 Comparison of stress distributions of fiber-optic coil with different radial elastic moduii of fiber-optic micro-cable

    圖14 光纖線團(tuán)浴盆特征參數(shù)隨徑向彈性模量的變化Fig.14 Variation of bathtub feature parameter of fiber-optic coil with radial elastic modulus of fiber-optic micro-cable

    3.1.3 徑向彈性系數(shù)

    設(shè)定繞制張力T=10 N,軸向彈性模量Eo,z=10 GPa,徑向彈性模量Eo,r=0.5 GPa,光纖線團(tuán)應(yīng)力分布隨光纖微纜徑向彈性系數(shù)的變化情況如圖15所示。

    圖15 光纖線團(tuán)應(yīng)力分布與徑向彈性系數(shù)的關(guān)系Fig.15 Relationship between stress distribution of fiber-optic coil and radial elastic coefficient of fiber-optic micro-cable

    光纖線團(tuán)應(yīng)力分布隨徑向彈性系數(shù)的變化趨勢(shì)(見圖16)與徑向彈性模量相似,徑向彈性系數(shù)越大,應(yīng)力曲線越平緩,除最外層外同層光纖微纜應(yīng)力越大,最小應(yīng)力向外層移動(dòng),相鄰層應(yīng)力變化量越小。這是由于徑向彈性系數(shù)的增大會(huì)使軸向力引起的光纖微纜徑向延伸量增大,造成各層光纖微纜徑向變形的減小,從而使應(yīng)力減小量減小,導(dǎo)致各層光纖微纜應(yīng)力增大。光纖線團(tuán)浴盆特征參數(shù)隨徑向彈性系數(shù)的變化如圖17所示。由圖17可知,隨著徑向彈性系數(shù)的增大,浴盆特征參數(shù)逐漸減小,光纖微纜徑向彈性系數(shù)越大,光纖線團(tuán)浴盆特征參數(shù)越接近1.

    圖16 不同徑向彈性系數(shù)下光纖線團(tuán)應(yīng)力分布對(duì)比Fig.16 Comparison of stress distributions of fiber-optic coils with different radial elastic coefficients of fiber-optic micro-cable

    圖17 光纖線團(tuán)浴盆特征參數(shù)隨徑向彈性系數(shù)的變化Fig.17 Variation of bathtub feature parameter of fiber-optic coil with radial elastic coefficient of fiber-optic micro-cable

    從光纖角度來(lái)看,在繞制張力相同條件下,光纖微纜軸向彈性模量越大,徑向彈性模量和徑向彈性系數(shù)越小,光纖線團(tuán)整體應(yīng)力越小,貯存壽命越長(zhǎng)。光纖線團(tuán)作為一個(gè)整體,其貯存壽命還需考慮光纖線團(tuán)的結(jié)構(gòu)穩(wěn)定性,應(yīng)力分布的浴盆特征是一個(gè)重要判據(jù),光纖微纜軸向彈性模量越小,徑向彈性模量和徑向彈性系數(shù)越大,浴盆特征越明顯,線團(tuán)結(jié)構(gòu)越穩(wěn)定,更有利于光纖線團(tuán)的貯存。而光纖微纜的彈性參數(shù)間也是相關(guān)聯(lián)的,均與光纖微纜結(jié)構(gòu)及各層材料特性有關(guān)。在光纖微纜設(shè)計(jì)時(shí),首先保證光纖線團(tuán)結(jié)構(gòu)穩(wěn)定性,并盡量減小光纖線團(tuán)內(nèi)部應(yīng)力水平,以提高光纖線團(tuán)的貯存壽命。

    3.2 繞制張力的影響

    設(shè)定軸向彈性模量Eo,z=10 GPa,徑向彈性模量Eo,r=0.5 GPa,徑向彈性系數(shù)Wo,r=0.5,光纖線團(tuán)應(yīng)力分布隨繞制張力的變化情況如圖18所示。

    圖18 光纖線團(tuán)應(yīng)力分布與繞制張力的關(guān)系Fig.18 Relationship between stress distribution of fiber-optic coil and winding tension

    不同繞制張力下光纖線團(tuán)應(yīng)力分布對(duì)比如圖19所示。由圖19可知:不同繞制張力的光纖線團(tuán)應(yīng)力均呈類似“拋物線”線型,繞制張力越大,應(yīng)力曲線越陡;同層光纖微纜應(yīng)力越大,相鄰層應(yīng)力變化量越大,不同繞制張力的應(yīng)力分布曲線最小應(yīng)力對(duì)應(yīng)層數(shù)相同。由(29)式可知,繞制張力增大,各層光纖微纜的應(yīng)力減小量增大,因此應(yīng)力曲線越陡。

    圖19 不同繞制張力下光纖線團(tuán)應(yīng)力分布對(duì)比Fig.19 Comparison of stress distributions of fiber-optic coil with different winding tensions

    (29)式可改寫為

    (30)

    (31)

    由(31)式可知,歸一化后,光纖線團(tuán)的應(yīng)力分布僅與Ω(n)和Θ(n)相關(guān),即與繞制機(jī)構(gòu)結(jié)構(gòu)參數(shù)和光纖微纜彈性參數(shù)相關(guān),而與繞制張力的大小無(wú)關(guān)。不同繞制張力下的浴盆特征參數(shù)是相同的,然而繞制張力的增大會(huì)使光纖線團(tuán)內(nèi)部應(yīng)力整體增大,降低光纖線團(tuán)的壽命。

    繞制張力越大,光纖線團(tuán)各層應(yīng)力越大,貯存壽命越短。因此需選擇較小的繞制張力,以提高光纖線團(tuán)的貯存壽命。然而光纖微纜具有一定的彎曲剛度,繞制張力較小時(shí),無(wú)法將光纖微纜緊密纏繞在線團(tuán)上,反而降低了光纖線團(tuán)的繞制質(zhì)量。在繞制參數(shù)設(shè)計(jì)時(shí),應(yīng)在滿足光纖微纜緊密纏繞的前提下盡量減小繞制張力。

    4 線團(tuán)繞制實(shí)測(cè)數(shù)據(jù)分析

    用兩根彈性參數(shù)不同的光纖微纜以相同張力繞制兩個(gè)結(jié)構(gòu)尺寸相同的線團(tuán),測(cè)量繞制后線團(tuán)的應(yīng)力分布,對(duì)每層長(zhǎng)度范圍內(nèi)的應(yīng)力進(jìn)行平均,獲得光纖線團(tuán)層均應(yīng)力分布曲線,并與仿真曲線進(jìn)行對(duì)比,如圖20所示。兩個(gè)線團(tuán)所用光纖微纜彈性參數(shù)見表2,圖20中仿真曲線的仿真參數(shù)與表1相同。

    表2 實(shí)驗(yàn)用光纖微纜彈性參數(shù)Tab.2 Elastic parameters of experimental fiber-optic micro-cables

    圖20 采用不同彈性參數(shù)光纖微纜的線團(tuán)應(yīng)力分布實(shí)測(cè)與仿真結(jié)果對(duì)比Fig.20 Comparison of measured and simulated results of stress distributions of fiber-optic coils with different elastic parameters of fiber-optic micro-cables

    由圖20可知,光纖線團(tuán)實(shí)測(cè)應(yīng)力數(shù)據(jù)隨層數(shù)的變化趨勢(shì)和整體線型與仿真結(jié)果是一致的,數(shù)值上偏差較小。實(shí)測(cè)結(jié)果存在偏差主要與繞線設(shè)備的張力控制精度以及光纖微纜軸向長(zhǎng)度上彈性參數(shù)波動(dòng)相關(guān)。對(duì)應(yīng)光纖微纜不同的彈性參數(shù),線團(tuán)繞制后整體應(yīng)力分布的變化符合前述仿真分析的結(jié)論。

    兩個(gè)線團(tuán)實(shí)測(cè)、仿真的浴盆特征參數(shù)如表3所示。由表2和表3可知,在繞制張力相同的條件下,線團(tuán)2所用光纖微纜的軸向彈性模量較小,徑向彈性模量和徑向彈性系數(shù)較大,對(duì)比線團(tuán)1,應(yīng)力實(shí)測(cè)結(jié)果的浴盆特征參數(shù)更接近1,與前述仿真分析結(jié)論是一致的。

    表3 線團(tuán)實(shí)測(cè)與仿真浴盆特征參數(shù)Tab.3 Bathtub feature parameters of measured and simulated results of fiber-optic coils

    5 結(jié)論

    光纖線團(tuán)應(yīng)力分布狀態(tài)是體現(xiàn)光纖線團(tuán)繞制質(zhì)量的重要因素。本文通過對(duì)光纖微纜和端板的受力分析,建立光纖線團(tuán)應(yīng)力分析模型,分析光纖微纜彈性參數(shù)和繞制張力對(duì)光纖線團(tuán)應(yīng)力分布的影響,并開展線團(tuán)繞制試驗(yàn)實(shí)測(cè)應(yīng)力加以對(duì)比。得出以下主要結(jié)論:

    1)從不同光纖微纜彈性參數(shù)和繞制張力仿真數(shù)據(jù)看,光纖線團(tuán)應(yīng)力分布呈類拋物線線型,最外層應(yīng)力最大,應(yīng)力曲線最低點(diǎn)更靠?jī)?nèi)層。

    2)從仿真結(jié)果看,光纖微纜軸向彈性模量越小、徑向彈性模量和彈性系數(shù)越大,有利于光纖線團(tuán)的結(jié)構(gòu)穩(wěn)定,但會(huì)降低光纖的貯存壽命,而繞制張力越大會(huì)降低光纖的壽命,但并不影響光纖線團(tuán)的結(jié)構(gòu)穩(wěn)定性。

    3)對(duì)不同彈性特性光纖微纜繞制的線團(tuán)進(jìn)行了實(shí)驗(yàn)室測(cè)量,線團(tuán)應(yīng)力分布和浴盆特征參數(shù)隨光纖微纜彈性特性的變化與仿真分析結(jié)論一致,驗(yàn)證了應(yīng)力模型和仿真分析的準(zhǔn)確性。

    4)在仿真分析的基礎(chǔ)上,提出了光纖微纜和繞制張力設(shè)計(jì)的優(yōu)化方向。在光纖微纜設(shè)計(jì)時(shí),首先保證光纖線團(tuán)結(jié)構(gòu)穩(wěn)定性,即減小光纖微纜軸向彈性模量,并增大徑向彈性模量和徑向彈性系數(shù),在此基礎(chǔ)上盡量平衡各彈性參數(shù)間關(guān)系,降低光纖線團(tuán)整體應(yīng)力水平;然后在繞制參數(shù)設(shè)計(jì)時(shí),應(yīng)在確保光纖微纜能夠緊密纏繞的前提下盡量減小繞制張力。

    本文研究能夠?yàn)闈撍饔霉饫w線團(tuán)設(shè)計(jì)及應(yīng)力分析、光纖微纜結(jié)構(gòu)設(shè)計(jì)、繞制工藝設(shè)計(jì)等方面提供理論參考,為后續(xù)光纖線團(tuán)的等應(yīng)力繞制研究奠定基礎(chǔ),同時(shí)本文涉及的研究方法也可為其他領(lǐng)域纏繞力學(xué)特性分析提供借鑒和參考。

    參考文獻(xiàn)(References)

    [1] 高卓,湯偉江,朱云周,等.微細(xì)光纜在水下航行器中的應(yīng)用及關(guān)鍵技術(shù)綜述[J].水下無(wú)人系統(tǒng)學(xué)報(bào),2017,25(5):385-395.

    GAO Z,TANG W J,ZHU Y Z,et al.Overview of applications of fiber optic micro-cable in undersea vehicle and key technologies[J].Journal of Unmanned Undersea Systems,2017,25(5):385-395.(in Chinese)

    [2] 李一平,李碩,張艾群.自主/遙控水下機(jī)器人研究現(xiàn)狀[J].工程研究——跨學(xué)科視野中的工程,2016,8(2):217-222.

    LI Y P,LI S,ZHANG A Q.Research status of autonomous &remotely operated vehicle[J].Journal of Engineering Studies,2016,8(2):217-222.(in Chinese)

    [3] MA C J,REN L Y,QU E S,et al.Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings[J].Optics Communications,2012,285(24):4949-4953.

    [4] 胡君良,馬恒堅(jiān),崔得東.制導(dǎo)光纜線包中光纜受力分析與線軸設(shè)計(jì)[J].光通信研究,1997(3):35-39.

    HU J L,MA H J,CUI D D.Force analysis on optical fiber cable in the control and guide cable pack and design of spool[J].Study on Optical Communications,1997(3):35-39.(in Chinese)

    [5] 胡君良,馬恒堅(jiān),崔得東.制導(dǎo)光纜線包光附加損耗分析與計(jì)算[J].應(yīng)用光學(xué),1998,19(6):44-47.

    HU J L,MA H J,CUI D D.Analysis and calculation of excess loss about the control and guide cable pack[J].Journal of Applied Optics,1998,19(6):44-47.(in Chinese)

    [6] BAKAIYAN H,HOSSEINI H,AMERI E.Analysis of multi-la-yered filament-wound composite pipes under combined internal pressure and thermomechanical loading with thermal variations[J].Composite Structures,2009,88(4):532-541.

    [7] ANSARI R,ALISAFAEI F,GHAEDI P.Dynamic analysis of multi-layered filament-wound composite pipes subjected to cyclic internal pressure and cyclic temperature[J].Composite Structures,2010,92(5):1100-1109.

    [8] LIU C,SHI Y Y.Design optimization for filament wound cylindrical composite internal pressure vessels considering process-induced residual stresses[J].Composite Structures,2020,235:111755.

    [9] BOUHAFS M,SEREIR Z,CHATEAUNEUF A.Probabilistic analysis of the mechanical response of thick composite pipes under internal pressure[J].International Journal of Pressure Vessels and Piping,2012,95:7-15.

    [10] 吳楊,邢靜忠,耿沛,等.考慮纖維體積含量變化的纖維纏繞厚壁柱形結(jié)構(gòu)的等強(qiáng)度設(shè)計(jì)[J].復(fù)合材料學(xué)報(bào),2015,32(3):789-796.

    WU Y,XING J Z,GENG P,et al.Constant strength design of filament wound thick-walled cylindrical structure considering variation of fiber volume content[J].Acta Materiae Compositae Sinica,2015,32(3):789-796.(in Chinese)

    [11] ZU L,XU H,ZHANG B,et al.Design of filament-wound composite structures with arch-shaped cross sections considering fiber tension simulation[J].Composite Structures,2018,194:119-125.

    [12] GHASEMI A R,ASGHARI B,TABATABAEIAN A.Determination of the influence of thermo-mechanical factors on the residual stresses of cylindrical composite tubes:experimental and computational analyses[J].International Journal of Pressure Vessels and Piping,2020,183:104098.

    [13] 李博,熊超,殷軍輝,等.多角度交替纏繞復(fù)合圓筒的剩余應(yīng)力算法及水壓試驗(yàn)[J].復(fù)合材料學(xué)報(bào),2018,35(6):1452-1463.

    LI B,XIONG C,YIN J H,et al.Residual stress algorithm for composite cylinder with alternate multi-angle winding layers and water-pressure test[J].Acta Materiae Compositae Sinica,2018,35(6):1452-1463.(in Chinese)

    [14] JIA M,YANG G L.Research of optical fiber coil winding model based on large-deformation theory of elasticity and its application[J].Chinese Journal of Aeronautics,2011,24(5):640-647.

    [15] 孟照魁,張春熹,楊遠(yuǎn)洪,等.光纖環(huán)繞制過程中的張力分析[J].北京航空航天大學(xué)學(xué)報(bào),2005,31(3):307-310.

    MENG Z K,ZHANG C X,YANG Y H,et al.Analysis of stress in winding fiber-optic ring[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(3):307-310.(in Chinese)

    [16] 溫澤強(qiáng),楊瑞峰,賈建芳.基于鍵合圖的光纖環(huán)繞制小張力控制結(jié)構(gòu)的建模和仿真[J].測(cè)控技術(shù),2012,31(3):119-127.

    WEN Z Q,YANG R F,JIA J F.Building and simulating the model of the tension control during winding a fiber optic sensor coil based on the bond graph[J].Measurement &Control Technology,2012,31(3):119-127.(in Chinese)

    [17] 嚴(yán)兵,姚海.浮式起重機(jī)籬笆式卷筒的結(jié)構(gòu)強(qiáng)度及穩(wěn)定性分析[J].船舶工程,2012,34(增刊2):204-208.

    YAN B,YAO H.Study on strength and stability of LeBus grooved drum applied in offshore crane[J].Ship Engineering,2012,34(S2):204-208.(in Chinese)

    [18] 朱洪軍,魯聰達(dá),劉健.籬笆式卷筒結(jié)構(gòu)的動(dòng)態(tài)特性研究[J].船舶工程,2013,35(2):51-58.

    ZHU H J,LU C D,LIU J.Study on dynamic characteristics of LeBus grooved drum structure[J].Ship Engineering,2013,35(2):51-58.(in Chinese)

    [19] 龔憲生,羅宇馳,吳水源.提升機(jī)卷筒結(jié)構(gòu)對(duì)多層纏繞雙鋼絲繩變形失諧的影響[J].煤炭學(xué)報(bào),2016,41(8):2121-2129.

    GONG X S,LUO Y C,WU S Y.Effect of drum structure of mine hoist on multilayer winding and multipoint lifting ropes’ discordance[J].Journal of China Coal Society,2016,41(8):2121-2129.(in Chinese)

    [20] MATTHIJSSE P,GRIFFIOEN W.Matching optical fiber lifetime and bend-loss limits for optimized local loop fiber storage[J].Optical Fiber Technology,2005,11(1):92-99.

    猜你喜歡
    線團(tuán)端板徑向
    一種風(fēng)電產(chǎn)品扣接端板及模具工藝
    淺探徑向連接體的圓周運(yùn)動(dòng)
    RN上一類Kirchhoff型方程徑向?qū)ΨQ正解的存在性
    比較:毛線誰(shuí)最多
    孩子(2021年1期)2021-01-27 02:24:03
    陽(yáng)光線團(tuán)
    基于PID+前饋的3MN徑向鍛造機(jī)控制系統(tǒng)的研究
    一類無(wú)窮下級(jí)整函數(shù)的Julia集的徑向分布
    繞線團(tuán)
    幼兒100(2018年34期)2018-12-29 12:31:44
    水下電機(jī)電纜的橡膠雙密封結(jié)構(gòu)
    H 型鋼梁端板螺栓連接節(jié)點(diǎn)抗震性能試驗(yàn)研究
    久久久精品区二区三区| 在线观看免费视频网站a站| 女人高潮潮喷娇喘18禁视频| 欧美黑人精品巨大| 欧美人与善性xxx| 久久久国产精品麻豆| 日韩,欧美,国产一区二区三区| 午夜免费观看性视频| 国产日韩欧美亚洲二区| 高清在线视频一区二区三区| 熟妇人妻不卡中文字幕| 亚洲成人一二三区av| 另类精品久久| 国产日韩欧美视频二区| 欧美成人精品欧美一级黄| 亚洲精品国产av蜜桃| 国产日韩欧美亚洲二区| 国产不卡av网站在线观看| 日韩一区二区视频免费看| 免费在线观看完整版高清| 成年美女黄网站色视频大全免费| 观看av在线不卡| www.熟女人妻精品国产| 人人澡人人妻人| 99久久99久久久精品蜜桃| 麻豆乱淫一区二区| 国产爽快片一区二区三区| 欧美在线黄色| 90打野战视频偷拍视频| 欧美日韩视频精品一区| 国产成人啪精品午夜网站| 亚洲国产最新在线播放| 飞空精品影院首页| 免费看不卡的av| 女人久久www免费人成看片| 久久天躁狠狠躁夜夜2o2o | 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 好男人视频免费观看在线| 欧美成人精品欧美一级黄| 欧美激情 高清一区二区三区| 国产成人精品无人区| 99热网站在线观看| 久久久久人妻精品一区果冻| 美女国产高潮福利片在线看| 免费黄频网站在线观看国产| 啦啦啦 在线观看视频| 中文字幕人妻丝袜制服| 国产精品国产三级专区第一集| 免费不卡黄色视频| 国产片内射在线| 国产av国产精品国产| 欧美日韩av久久| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 性少妇av在线| 日韩欧美精品免费久久| 一级爰片在线观看| 老鸭窝网址在线观看| 色综合欧美亚洲国产小说| 久久99热这里只频精品6学生| 国产1区2区3区精品| www.熟女人妻精品国产| 国产成人a∨麻豆精品| 国产精品嫩草影院av在线观看| 老司机靠b影院| 国产野战对白在线观看| 国产精品久久久av美女十八| 在线观看一区二区三区激情| 男女无遮挡免费网站观看| 国产xxxxx性猛交| 成年动漫av网址| 伊人久久国产一区二区| 亚洲国产看品久久| 午夜影院在线不卡| 韩国精品一区二区三区| 免费黄频网站在线观看国产| 欧美黑人精品巨大| 亚洲精品第二区| 水蜜桃什么品种好| 如何舔出高潮| 免费少妇av软件| 国产欧美亚洲国产| 欧美日韩视频精品一区| 在线观看免费高清a一片| 日韩制服丝袜自拍偷拍| 高清黄色对白视频在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 午夜免费观看性视频| 18在线观看网站| 在线观看国产h片| 久久久久久免费高清国产稀缺| 一本一本久久a久久精品综合妖精| 久久性视频一级片| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 国产精品 国内视频| 亚洲国产中文字幕在线视频| av卡一久久| 激情视频va一区二区三区| 久久天堂一区二区三区四区| 男人操女人黄网站| 免费在线观看视频国产中文字幕亚洲 | 精品一区二区免费观看| 亚洲综合精品二区| 一区福利在线观看| 丝袜人妻中文字幕| 日本av手机在线免费观看| 欧美成人精品欧美一级黄| 女性生殖器流出的白浆| 久久久久视频综合| 免费黄色在线免费观看| 五月开心婷婷网| 99久久精品国产亚洲精品| 超碰成人久久| 精品一品国产午夜福利视频| 亚洲天堂av无毛| 卡戴珊不雅视频在线播放| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 黄片播放在线免费| 十八禁高潮呻吟视频| 中文字幕另类日韩欧美亚洲嫩草| 国产片内射在线| 蜜桃国产av成人99| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 蜜桃国产av成人99| 男女之事视频高清在线观看 | 观看美女的网站| 中文字幕亚洲精品专区| 午夜福利网站1000一区二区三区| 色视频在线一区二区三区| www.自偷自拍.com| 一级片免费观看大全| 两个人看的免费小视频| 老司机靠b影院| 久久av网站| 人体艺术视频欧美日本| 国产精品国产三级专区第一集| 99热网站在线观看| 亚洲 欧美一区二区三区| 美女国产高潮福利片在线看| 极品少妇高潮喷水抽搐| 五月开心婷婷网| 日本午夜av视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久99热这里只频精品6学生| 美女国产高潮福利片在线看| 午夜精品国产一区二区电影| 日韩一区二区视频免费看| 亚洲视频免费观看视频| 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 好男人视频免费观看在线| 亚洲熟女毛片儿| 午夜免费观看性视频| 久久女婷五月综合色啪小说| 这个男人来自地球电影免费观看 | 最近2019中文字幕mv第一页| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 老鸭窝网址在线观看| e午夜精品久久久久久久| 91老司机精品| 黄色视频在线播放观看不卡| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 成人黄色视频免费在线看| 亚洲情色 制服丝袜| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 一级毛片电影观看| 亚洲美女搞黄在线观看| 又大又爽又粗| 又黄又粗又硬又大视频| www.av在线官网国产| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 制服丝袜香蕉在线| 亚洲精品av麻豆狂野| 丝袜喷水一区| av福利片在线| 亚洲欧美激情在线| 久久99一区二区三区| 国产精品女同一区二区软件| 国产淫语在线视频| 久久这里只有精品19| 水蜜桃什么品种好| 欧美激情高清一区二区三区 | 欧美激情极品国产一区二区三区| 激情五月婷婷亚洲| 午夜福利视频在线观看免费| 中文字幕人妻熟女乱码| 一级a爱视频在线免费观看| 19禁男女啪啪无遮挡网站| xxx大片免费视频| 999精品在线视频| 国产有黄有色有爽视频| 成人18禁高潮啪啪吃奶动态图| 亚洲国产成人一精品久久久| 汤姆久久久久久久影院中文字幕| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av高清不卡| 久久女婷五月综合色啪小说| 校园人妻丝袜中文字幕| av视频免费观看在线观看| 视频区图区小说| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 欧美成人午夜精品| 天天操日日干夜夜撸| xxxhd国产人妻xxx| 国产日韩欧美在线精品| 午夜老司机福利片| 老司机靠b影院| 亚洲一码二码三码区别大吗| 色播在线永久视频| 99国产精品免费福利视频| 国产成人欧美在线观看 | 精品少妇黑人巨大在线播放| 久久久久精品国产欧美久久久 | 国产成人a∨麻豆精品| 久热这里只有精品99| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 精品国产乱码久久久久久男人| 天堂8中文在线网| 天天影视国产精品| 欧美日韩视频精品一区| 欧美成人午夜精品| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 欧美人与善性xxx| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 亚洲国产欧美一区二区综合| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 丰满乱子伦码专区| 国产色婷婷99| 18禁裸乳无遮挡动漫免费视频| 热re99久久精品国产66热6| 国产伦人伦偷精品视频| 9191精品国产免费久久| 日韩,欧美,国产一区二区三区| 国产成人啪精品午夜网站| 日日啪夜夜爽| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 亚洲欧美一区二区三区黑人| 色播在线永久视频| av有码第一页| 久久精品久久精品一区二区三区| avwww免费| 午夜老司机福利片| 久久久久久久国产电影| 国产精品国产三级专区第一集| 久久精品亚洲熟妇少妇任你| 人体艺术视频欧美日本| 色播在线永久视频| 成人免费观看视频高清| 精品一区二区三区av网在线观看 | 色吧在线观看| 亚洲av在线观看美女高潮| 91aial.com中文字幕在线观看| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| 久热这里只有精品99| 亚洲第一av免费看| 欧美日韩亚洲综合一区二区三区_| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 不卡视频在线观看欧美| 免费观看a级毛片全部| xxxhd国产人妻xxx| 亚洲美女搞黄在线观看| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 777久久人妻少妇嫩草av网站| 人妻一区二区av| bbb黄色大片| av不卡在线播放| 国产精品国产av在线观看| 香蕉国产在线看| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 一区二区三区四区激情视频| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 日日摸夜夜添夜夜爱| 天天影视国产精品| 国产黄频视频在线观看| 亚洲欧美一区二区三区久久| 亚洲成色77777| 亚洲精品久久午夜乱码| 不卡视频在线观看欧美| 久久午夜综合久久蜜桃| 热99久久久久精品小说推荐| 国产视频首页在线观看| 国产不卡av网站在线观看| 国产精品免费大片| 一区二区日韩欧美中文字幕| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 国产成人啪精品午夜网站| 一个人免费看片子| 日韩中文字幕视频在线看片| 日本欧美视频一区| 成人国语在线视频| 国产成人系列免费观看| 一本—道久久a久久精品蜜桃钙片| 老熟女久久久| 亚洲美女视频黄频| 熟妇人妻不卡中文字幕| 亚洲国产av新网站| av在线app专区| 精品国产乱码久久久久久小说| 国产无遮挡羞羞视频在线观看| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 十八禁网站网址无遮挡| 黑人欧美特级aaaaaa片| 亚洲成av片中文字幕在线观看| 国产视频首页在线观看| 欧美激情 高清一区二区三区| 男女国产视频网站| 国产又色又爽无遮挡免| 久久久久精品国产欧美久久久 | 啦啦啦中文免费视频观看日本| 国产成人一区二区在线| 日本av手机在线免费观看| 国产成人一区二区在线| 日本爱情动作片www.在线观看| 国产不卡av网站在线观看| 男女高潮啪啪啪动态图| 国产午夜精品一二区理论片| 久久影院123| 午夜免费男女啪啪视频观看| 国产视频首页在线观看| 1024香蕉在线观看| 青春草亚洲视频在线观看| 久热这里只有精品99| 国产一区亚洲一区在线观看| 在线观看www视频免费| 久久久久久人妻| www.自偷自拍.com| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 九九爱精品视频在线观看| 久久天躁狠狠躁夜夜2o2o | 99久久综合免费| 免费在线观看完整版高清| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 中文天堂在线官网| 欧美久久黑人一区二区| 97在线人人人人妻| 最近最新中文字幕大全免费视频 | 超碰成人久久| 亚洲欧美色中文字幕在线| 丝袜人妻中文字幕| 亚洲国产欧美网| 午夜福利一区二区在线看| 操出白浆在线播放| 亚洲一区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频| 亚洲国产成人一精品久久久| 中文天堂在线官网| netflix在线观看网站| 亚洲第一青青草原| 中文字幕色久视频| 女的被弄到高潮叫床怎么办| 欧美精品人与动牲交sv欧美| netflix在线观看网站| 午夜福利,免费看| 日韩中文字幕视频在线看片| 中文字幕制服av| 午夜日本视频在线| 国产在视频线精品| 久久亚洲国产成人精品v| 丰满迷人的少妇在线观看| 午夜福利,免费看| 亚洲精品久久午夜乱码| 色94色欧美一区二区| 午夜91福利影院| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 最近最新中文字幕大全免费视频 | 久久婷婷青草| 久久ye,这里只有精品| 亚洲精品一二三| 中国国产av一级| 国产精品二区激情视频| av国产精品久久久久影院| 黄色一级大片看看| 99久久99久久久精品蜜桃| 你懂的网址亚洲精品在线观看| 亚洲精品国产av成人精品| 久久精品国产亚洲av高清一级| 下体分泌物呈黄色| 91国产中文字幕| 国产精品蜜桃在线观看| 日日撸夜夜添| 秋霞伦理黄片| 国产精品欧美亚洲77777| 熟女av电影| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 我要看黄色一级片免费的| 满18在线观看网站| 亚洲欧美激情在线| av在线观看视频网站免费| 亚洲精品在线美女| 日韩不卡一区二区三区视频在线| 一级爰片在线观看| 久久ye,这里只有精品| 男女床上黄色一级片免费看| 国产免费视频播放在线视频| 国产伦人伦偷精品视频| 亚洲精品第二区| 亚洲精品视频女| 一边摸一边抽搐一进一出视频| 美女脱内裤让男人舔精品视频| 久久青草综合色| 精品视频人人做人人爽| 99久久精品国产亚洲精品| 国产成人欧美| 亚洲av中文av极速乱| 亚洲一区中文字幕在线| 99精国产麻豆久久婷婷| 久久精品久久精品一区二区三区| 欧美黑人精品巨大| 色吧在线观看| 亚洲精品在线美女| 电影成人av| 97人妻天天添夜夜摸| 在线看a的网站| 99九九在线精品视频| 亚洲欧美成人精品一区二区| 精品久久蜜臀av无| www.自偷自拍.com| 制服诱惑二区| 麻豆乱淫一区二区| 一级片免费观看大全| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 日日撸夜夜添| 人妻 亚洲 视频| 国产成人av激情在线播放| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 一区二区三区精品91| 自线自在国产av| 亚洲国产欧美在线一区| 人人妻人人爽人人添夜夜欢视频| 丰满少妇做爰视频| 一级,二级,三级黄色视频| 国产成人欧美| 亚洲免费av在线视频| 80岁老熟妇乱子伦牲交| 精品少妇久久久久久888优播| 欧美日韩综合久久久久久| 美女国产高潮福利片在线看| 欧美日韩视频精品一区| 一个人免费看片子| 国产日韩一区二区三区精品不卡| 波野结衣二区三区在线| 水蜜桃什么品种好| 操出白浆在线播放| 美女中出高潮动态图| 欧美日韩视频高清一区二区三区二| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区国产| 国产极品粉嫩免费观看在线| 日韩电影二区| 青春草亚洲视频在线观看| 午夜福利免费观看在线| 男人爽女人下面视频在线观看| 免费人妻精品一区二区三区视频| 高清在线视频一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 老司机影院成人| 日本av免费视频播放| 亚洲精品一区蜜桃| av一本久久久久| 岛国毛片在线播放| 一边摸一边抽搐一进一出视频| 午夜av观看不卡| 波多野结衣av一区二区av| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看| 日本欧美国产在线视频| 免费高清在线观看视频在线观看| 久久久久久久国产电影| www.精华液| 男女床上黄色一级片免费看| 女人爽到高潮嗷嗷叫在线视频| 久久免费观看电影| 黑人巨大精品欧美一区二区蜜桃| 夫妻午夜视频| 看十八女毛片水多多多| 丝袜脚勾引网站| 在线观看免费午夜福利视频| 日本欧美视频一区| 高清av免费在线| 中文字幕制服av| 一区二区日韩欧美中文字幕| 大码成人一级视频| 国产亚洲精品第一综合不卡| 亚洲国产av影院在线观看| 最近2019中文字幕mv第一页| 精品福利永久在线观看| 一本大道久久a久久精品| 免费高清在线观看日韩| 咕卡用的链子| 国产高清不卡午夜福利| 高清不卡的av网站| 啦啦啦 在线观看视频| 毛片一级片免费看久久久久| 九草在线视频观看| 人人澡人人妻人| 一本一本久久a久久精品综合妖精| av天堂久久9| 人妻一区二区av| xxxhd国产人妻xxx| 国产精品.久久久| 嫩草影院入口| 你懂的网址亚洲精品在线观看| 免费日韩欧美在线观看| 国产成人精品无人区| 亚洲精品成人av观看孕妇| 成人手机av| 女人被躁到高潮嗷嗷叫费观| 午夜老司机福利片| 国产野战对白在线观看| 中文精品一卡2卡3卡4更新| 日韩电影二区| 久久ye,这里只有精品| 精品少妇黑人巨大在线播放| 丁香六月欧美| 美女脱内裤让男人舔精品视频| 国产精品嫩草影院av在线观看| a级毛片在线看网站| 免费日韩欧美在线观看| 高清黄色对白视频在线免费看| 97人妻天天添夜夜摸| 日韩av不卡免费在线播放| 亚洲欧美日韩另类电影网站| 欧美精品一区二区免费开放| 女人高潮潮喷娇喘18禁视频| 天堂8中文在线网| 最近最新中文字幕大全免费视频 | 日韩精品免费视频一区二区三区| 在线观看免费高清a一片| 日韩av不卡免费在线播放| 日日啪夜夜爽| 色视频在线一区二区三区| 国产女主播在线喷水免费视频网站| 免费黄网站久久成人精品| 伦理电影免费视频| 免费观看人在逋| 悠悠久久av| 国产精品欧美亚洲77777| 成人亚洲欧美一区二区av| 在线观看www视频免费| 大片电影免费在线观看免费| 久久女婷五月综合色啪小说| 久久久精品区二区三区| 一级片'在线观看视频| videosex国产| 建设人人有责人人尽责人人享有的| av又黄又爽大尺度在线免费看| 黄色一级大片看看| 国产亚洲av高清不卡| 中文字幕色久视频| 五月开心婷婷网| 麻豆精品久久久久久蜜桃| 777米奇影视久久| 午夜福利免费观看在线| 韩国高清视频一区二区三区| 大片电影免费在线观看免费| 欧美最新免费一区二区三区| 一区二区三区激情视频| av网站在线播放免费| 老司机影院毛片| 999精品在线视频| 欧美少妇被猛烈插入视频| 中文字幕人妻丝袜制服| 中文字幕制服av| 制服人妻中文乱码| 国产福利在线免费观看视频| 国产在线一区二区三区精| 人人妻人人添人人爽欧美一区卜| 美女大奶头黄色视频| 在线观看人妻少妇| 久久 成人 亚洲| 亚洲精品,欧美精品| 久久婷婷青草| 国产在视频线精品| 国产欧美日韩综合在线一区二区|