• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical stability,thermal behavior,and shelf life assessment of extruded modified double-base propellants

    2018-03-12 08:03:15SherifElbasuneyAhmedFahdHosamMostafaSherifMostafaRamySadek
    Defence Technology 2018年1期
    關(guān)鍵詞:顆粒飼料技術(shù)參數(shù)社會(huì)效益

    Sherif Elbasuney,Ahmed Fahd,Hosam E.Mostafa,Sherif F.Mostafa,Ramy Sadek

    School of Chemical Engineering,Military Technical College,Kobry El-Kobba,Cairo,Egypt

    1.Introduction

    Modified double base(MDB)propellants have found wide applications in modern military and space rocketry,in view of their superior performance[1,2].It is well known that MDB propellants are evolved from double-base by integrating energetic fillers such as HMX or RDX.There is also another trend to integrate potential oxidizers such as ammonium perchlorate(AP),as well as active metal fuels such as aluminum,magnesium,and boron[3-6].This is why MDB propellants have recently been used in booster,sustainer,and dual thrust rocket motors[7-9].

    MDB can exhibit a wide range of burning rate up to 40 mm/s;specific impulse can also be varied from 220 to 270 s[9-12].It has been reported that integration of stoichometric binary mixture of oxidizer-metal fuel(AP/Al),and energetic nitramine such as HMX offered a higher specific impulse(Fig.1)[9,13-15].

    MDB based on binary mixture of AP/Al and HMX offered higher specific impulse by 10%and 9%respectively compared with reference formulation[9].Stoichometric binary mixture of AP/Al had a dual effect by increasing the average operating pressure and burning rate[9].This action was ascribed to the gaseous decomposition nature of AP(Equation(1)),and the exothermic oxidation of Al metal fuel which could enhance the heat of combustion,and flame temperature[1,2,7,16].

    Aluminum metal fuel,with high exothermic heat of combustion(7.4 kcal/g)and excellent thermal conductivity values,tended to increase the burning rate[7,17,18].Aluminum particles are able to react not only with free oxygen resulted from oxidizer decomposition;but also it is able to react with inert decomposition gaseous products and add much more heat to the combustion process[18-20].

    The great impact of HMX on ballistic performance was attributed to the positive heat of formation(+353.8 kJ/kg).HMX is a highly effective explosive material with heat of explosion 6197 kJ/kg and gaseous product of 902 L/kg[13].HMX also has a slightly negative oxygen balance which means decomposition products of low molecular weight[13,21].Much research has been directed toward the development of MDB propellants with enhanced combustion characteristics and high specific impulse[22-25].However less attention has been directed to investigate the impact of different energetic additives on chemical stability,thermal behavior,and shelf life[26].

    1.1.Chemical stability of MDB propellants

    The nitrate esters(nitrocellulose&nitroglycerine),the main constituents of double-base propellant,are molecules that aren't chemically stable.Their decomposition is slow in ambient conditions of temperature,pressure,and humidity.In severe environments,the chemical decomposition becomes autocatalytic[11].There are many mechanisms through which chemical decomposition can occur;these mechanisms include:

    1.1.1.Chain reactions

    Chain reactions start with the homolytic breaking of the weak O-NO2bond,forming nitrogen dioxide and the corresponding alkoxyl radical[27-29].These reactive free radicals immediately undergo consecutive reactions with nearby nitrate ester molecules[29].

    1.1.2.Saponification(hydrolysis)

    Another main decomposition pathway is the neutral to acid hydrolysis of the nitrate esters[28].This reaction is catalyzed by moisture and residual acids(which weren't fully removed after nitrate ester synthesis),or by water,or by acids formed during decomposition(Equation(3)).

    A further decomposition reaction is the “enhanced hydrolysis”.This reaction was found to have low activation energy of 71 kJ/mol.Therefore it can be a dominant decomposition reaction at lower temperatures[30].

    1.1.3.Auto-catalytic reactions

    Decomposition products of reactions(2)can further transformed in presence of moisture and oxygen as follow

    Whereas the primary homolytic reaction(2)can't be suppressed,the consecutive reactions(3-6)can be slowed down nearly to zero by binding or elimination of acids,nitric oxides,and water from the system.This fact was employed for the stabilization of double-base propellants by integrating stabilizing agents[30,31].Stabilizers fulfill their purpose by reacting with the nitrogen oxides and neutralize the decomposition products[32].Conventional double-base propellants,with proper percentage of stabilizer,can offer a safe chemical life of at least 20 years[33].For modified systems containing energetic solid additives similar shelf life should be secured[34].A number of studies have been carried out on the thermal stability of MDB propellants[35-38].Complete information regarding the influence of high energy ingredients including(in organic oxidizers/high explosives)on MDB propellant stability and shelf life is vital in regards of their handling,processing,transportation,and storage.

    1.2.Impact of different energetic additives on chemical stability

    AP has a great impact on the degradation of propellants containing nitrate esters.Many researchers have studied the rate of stabilizer depletion and the time to ignition of such propellants[39].Asthana,Divekar et al.investigated the stability,auto ignition,and stabilizer depletion of MDB propellants containing NG and AP[40].It was noted that the inclusion of AP increased the autocatalytic behavior of MDB propellants over time[41].MDB based on AP demonstrated ease of ignition suggesting faster decomposition kinetics[42].AP-MDB propellants possess shorter shelf life than their conventional counterparts[40,43].Further research showed that MDB containing AP and NG exhibited less stability than conventional double-base[44].However,nitramine doublebase propellants exhibited relatively good thermalstability[45-49].This paper is devoted to investigate the effect of binary mixture of oxidizer/metal fuel(AP/Al)and energetic nitramine(HMX)on DB chemical stability,thermal behavior,as well as shelf life assessment.MDB formulation based on HMX demonstrated extended service life of 16 years compared to(AP/Al)-MDB which demonstrated 9 years.DSC outcomes demonstrated an increase in heat released with aging time.The released heat was increased by 31,41,and 25%for reference,(AP/Al)-MDB,and HMX-MDB formulations respectively.This thermal behavior was ascribed to the auto-catalytic thermal degradation over artificial aging.Correlation between the increase in heat released and the evolved nitrogen oxides was conducted.

    2.Experimental

    2.1.Manufacture of MDB formulations

    Screw extrusion technique emphasizes mixing of different ingredients to ensure good homogenization,high density,and dimensional stability.This technique included many stages such as blending,followed by rolling,grinding,granulation,and finally extrusion to obtain grains of desired shape and dimensions[50].Different MDB formulations based on stoichiometric binary mixture(AP/Al),and HMX at 10 wt%solid loading level,were manufactured by screw extrusion.

    2.2.Chemical stability of MDB

    Evaluation of chemical stability,deals with the fact that the rate of decomposition at normal temperature is judged from decomposition at higher temperature[51,52].Quantitative stability tests were employed for fast and reliable evaluation of MDB chemical stability;they were devoted to the direct measurement of evolved gasses[53].The most commonly used quantitative stability tests are Bergmann-Junk test,and Vacuum stability test.

    2.2.1.Bergmann-Junk test

    Bergmann-Junk test is the main quantitative test for DB stability evaluation.In this test,5g of the tested sample was heated at 120°C for 5 h.The evolved nitrogen oxides(NOx)were entrapped in a secondary tube containing 50 ml of de-ionized water.The evolved NOx gases were quantitatively determined by titration using potassium iodide solution.The acceptable limit for Bergmann-Junk test is 10 ml of NOx/5 g sample[23,54].

    Vacuum stability test is a controlling,measuring,enabling evaluation of temperature stability from measurements of evolved gases from tested sample during long term isothermal heating.This test was performed according to STANAG 4556,where 1 g of the sample was heated at 90°C for 40 h with pressure measurement reading each 1 min during the isothermal heating process.

    2.3.Thermal behavior of MDB

    Ignition temperature is one of the main important characteristics which need to be evaluated for developed MDB formulation,in an attempt to evaluate the impact of different energetic constituents on MDB heat sensitivity.A sample of 0.1 g was introduced in a glass tube and heated at controlled rate of 5°C/min till ignition[32].Phase change with temperature,onset decomposition temperature,and heat released upon combustion are the main parameters for MDB thermal stability evaluation.Differential scanning calorimetry(DSC)measures heat flow associated with phase changes(i.e.melting),endothermic/exothermic decomposition as a function of temperature or time.DSC measurements were performed using DSC 2920 by TA instruments.2 mg of MDB propellants were heated up to 300°C at 5°C/min,under nitrogen gas flow at 5 ml/min.

    2.4.Artificial aging

    Artificial aging was conducted in an attempt to reduce the time scale by storing the propellant at elevated temperatures so that prediction of service life can be made in shorter times.It facilitates the planning of time-temperature profile of MDB with limited knowledge about their degradation behavior[55].Artificial aging was performed by isothermal heating at 80°C in temperature controlled oven under ambient atmospheric conditions.The developed MDB formulations were stored under isothermal heating for 4,8,14 and 28 days[56].Consequently safe storagelife of the propellant can be predicted[56].

    2.5.Shelf life assessment of MDB

    Van't Hoff's formula(Equation(7))enabled the estimation of inservice periods at given in-storage temperatures,from the equivalent time-temperature loads during the artificial ageing.Van't Hoff's formula has been proved by experience to be suitable to establish the time-temperature profile[57].

    Where:TE,TT,F,and ΔTFare time in years at the in-service temperature(TEin0C),test time in days at the test temperature(TTin0C),reaction rate change factor per 10°C of temperature change(Fusually between 2 and 4),and temperature interval for actual valueFrespectively.Factor F was determined using Arrhenius Equation(8)[57].

    Where,Eais the activation energy(kJ/mol),andRis the ideal gas constant[55].Ffactor was deduced by compiling and comparing reaction rates obtained at different temperatures[55].The range for this factor is often between 2 and 4[57].Table 1 demonstrates the accelerated ageing conditions simulating an in-use time up to 32 years at 25°C for developed MDB propellants.

    The change in chemical stability of aged MDB was tracked by quantifying the evolved NOx gases with aging time.Their thermal behavior was investigated and quantified using DSC.Novel correlation between chemical stability(volume of evolved NOx gases)and thermal behavior(Heat released)was represented.

    3.Results and discussions

    3.1.Chemical stability of MDB

    The volume of nitrogen oxides evolved from freshly manufactured MDB compositions was quantified using Bergman-Junk test.The quantified NOxare listed in Table 2.

    總之,正確的水分調(diào)控對(duì)于高效、低耗地制作優(yōu)質(zhì)硬顆粒飼料具有重要作用。在實(shí)際生產(chǎn)中,由于各企業(yè)顆粒飼料產(chǎn)品的配方組成不同、原料質(zhì)量的變異、加工環(huán)境、生產(chǎn)設(shè)備、蒸汽條件等的不同或客戶的需要不同,都會(huì)對(duì)水分的調(diào)控技術(shù)參數(shù)提出不同要求。因此,飼料企業(yè)應(yīng)重視硬顆粒飼料加工技術(shù)的研究與創(chuàng)新,通過加工參數(shù)的優(yōu)化研究,獲得實(shí)現(xiàn)加工優(yōu)質(zhì)顆粒飼料的最佳參數(shù)組合,并將這些參數(shù)組合作為生產(chǎn)中的控制標(biāo)準(zhǔn),只有這樣,才能使企業(yè)和用戶獲得最佳經(jīng)濟(jì)與社會(huì)效益。

    The volume of NOxevolved from reference DB and MDB formulations were within the acceptable limits(10 ml of NOx/5 g sample)[54].HMX based formulation exhibited similar value of evolved NOxto reference.This indicated that HMX is compatible with double base constituents;no side chemical reactions could take place.However AP based formulation exhibited the largest volume of evolved NOxgases.This was attributed to the reactivity of AP oxidizer to react with nitroglycerine to form perchloric acid[30,58].Vacuum stability test represents a fast way of chemical stability determination.Results from vacuum stability test for freshly manufactured MDB propellants are listed in Table 3.The evolved NOx confirmed the obtained data from Berman-Junk test.

    3.2.Thermal behavior of MDB

    Ignition temperature test was conducted to measure the temperature of spontaneous ignition by progressive heating.Even though,MDB formulation exhibited an increase in heat released during exothermic decomposition,there was no dramatic change inignition temperature.The ignition temperature for reference,AP/Al-MDB,and HMX-MDB was found to be 171,172,170°C respectively.DSC was employed to monitor any chemical/physical changes which involve the evolution/absorption of heat.The total heat released,the maximum decomposition temperature,and the onset decomposition temperature were measured and evaluated using DSC(Fig.2).

    Table 1Ageing times calculated on the basis of thermal equivalent load at TE=25°C using the generalized Van't Hoff's rule with factor F=3.

    All Formulations demonstrated one exothermic decomposition peak.Energetic additives did not greatly affect the maximum decomposition temperature but they positively impact the total heat released upon combustion.Summary of total heat released(J/g)and maximum peak temperature(°C)are tabulated in Table 4.

    The inclusion different energetic additives including binary mixture of AP/Al,and HMX into DB propellants increased the released heat upon decomposition due to the favorable heat added by these modifiers.Formulation 2 based on HMX exhibited the highest released heat.This was ascribed to the fact that HMX decomposes with the release of large amount of heat 6197 J/g.

    Table 2Quantified NOxgases evolved from freshly manufactured MDB using Bergmann-Junk test.

    Table 3Vacuum stability test results of freshly developed MDB.

    3.3.Shelf life assessment

    The developed MDB were isothermally aged at 80°C for different periods.The increase in evolved NOxoxides was quantified with aging time and shelf life prediction using Bergman-Junk test(Table 5).

    Results demonstrated that AP based formulation demonstrated the least chemical stability.This behavior was attributed to the fact that AP can degrade to form perchloric acid;which could cause rapid hydrolysis of the nitrate ester.This degradation action could accelerate the propellant decomposition(Equations(9)-(12))[30,45,58].

    MDB propellants based on HMX revealed stability similar to reference formulation.This was ascribed to the high thermal stability of HMX.Furthermore,no side reactions could take place between HMX and DB constituents.Quantification of evolved NOx gases with aging time was performed using vacuum stability test(Table 6).Vacuum stability test outcomes confirmed the findings of Bergmann-Junk test.

    There was an increase in volume of evolved NOxwith aging time.The volume of evolved NOx gases from HMX-MDB was higher than reference formulation but lower than AP-MDB.HMX-MDB and reference formulation exhibited similar shelf life of at least 16 years.On the other hand MDB based on binary mixture of AP/Al exhibited shelf life of 9 years.This was attributed to the induced catalytic degradation upon inclusion of AP with the formation of perchloric acid.

    3.4.Thermal behavior of aged MDB

    MDB demonstrated a decrease in ignition temperature with isothermal aging time(Table 7).

    It is clear that sensitivity to heat of different MDB formulations increased with aging.This behavior was ascribed to the decrease in the required activation energy to start the chemical conversion[34].HMX based formulation demonstrated the highest thermalstability;this was attributed to the fact that higher energy is required for the activation of HMX compared with AP[13].The thermal behavior of aged MDB after aging period of 14 days were investigated with DSC to that of freshly manufactured formulation.DSC thermograms of aged MDB formulations ensured the findings of Bergman-Junk and Vacuum stability tests.The main findings from DSC thermograms included:shifting of maximum decomposition peak temperature to lower value,and an increase in total heat released with aging.Figs.3-5 demonstrate the DSC thermograms for fresh and aged formulations.

    Table 4Thermal behavior characteristics of fresh manufactured MDB.

    All investigated MDB formulations exhibited similar thermal behavior with aging.This behavior encompasses an increase in heatreleased as well as a decrease in the temperature at maximum heat released.This thermal behavior was ascribed to the degradation of MDB over aging.MDB propellants could degrade by thermal decomposition of NC and NG,which might start with the homolytic breakdown of the O-NO2bond[55].This reaction might be catalyzed by moisture and residual acids formed as products during the decomposition process[55].Table 8 summarized the increase in total heat released of aged formulations,to fresh manufactured formulations.

    Table 5Bergmann-Junk test results after aging at 80°C.

    Table 6Quantification of NOxwith aging using vacuum stability test.

    Table 7Ignition temperature for aged MDBP.

    DSC out comes ensured the findings of Bergmann-Junk and Vacuum stability tests.The total heat released was increased by 31,41 and 25%for reference formulation,binary mixture of(AP&Al),and HMX respectively.HMX based formulation demonstrated superior thermal stability.This behavior was attributed to the great consumption of heat energy for the activation of HMX compared to AP,as well as the reactivity of AP toward NG.

    Table 8The increase in heat released with isothermal aging time.

    4.Conclusion

    MDB based on HMX exhibited good chemical and thermal stabilities using quantitative chemical stability tests and DSC respectively.MDB based on HMX exhibited service life of 16 years,similar to reference formulation.MDB based on AP demonstrated service life of 9 years.Low service life of MDB based on AP was ascribed to the reactivity of AP towards NG with the formation of perchloric acid.All MDB formulations exhibited an increase in evolved NOx,and total heat released with aging time.The increase in heat released by 31%was found to be equivalent to evolved NOxgases of 6.2 cm3/5 g and 2.5 cm3/1 g for Bergman-Junk,and Vacuum stability test respectively.These values should not be exceeded for safe storage.This manuscript shaded the light on HMX which offered MDB with balanced ballistic performance,thermal and chemical stability,as well as extended service life.

    [1]Sadek R,Kassem M,Abdo M,Elbasuney S.Spectrally adapted red flare tracers with superior spectral performance.Def Technol 2017:1-7.

    [2]Sadek R,Kassem M,Abdo M,Elbasuney S.Novel yellow colored flame compositions with superior spectral performance.Def Technol 2017;13(1):33-9.

    [3]Meda L,G.L.M.,Braglia R,Abis L,Gallo R,Severini F,et al.A wide characterization of aluminum powders for propellants.In:Proceedings of the 9-IWCP,novel energetic materials and applications,grafiche g.s.s,Bergamo;November 2004.

    [4]Yetter Richard A,G.A.R.,Son Steven F.Metal particle combustion and nanotechnology.In:Proceedings of the combustion institute,32;2009.

    [5]Han X,W.T.,Lin ZK,Han DL,Li SF,Zhao FQ,et al.RDX/AP-CMDB propellants containing fullerenes and carbon black additives.Def Sci J 2009;59:284-9.

    [6]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208:296-304.

    [7]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.p.60-96.

    [8]Davenas A.Solid rocket propulsion technology.Elsevier Science;2012.

    [9]Fahd A,Mostafa HE,Elbasuney S.Certain ballistic performance and thermal properties evaluation for extruded modified double-base propellants.Central Eur J Energ Mater 2017;14(3).

    [10]CS,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [11]Davenas A.Solid rocket Motor Design.Progress in Astronautics and Aeronautics,AIAA.;1996.

    [12]Sutton GPB,O.Solid propellants.In:Rocket propulsion elements.Wiley;2011.p.475-512.

    [13]Gautarn GK,S.M.P.,Joshi AD,Mulage KS,Singh SN.Study of energetic nitramine extruded double-base propellants.Def Sci J 1998;48(2).

    [14]A,Z.,HMX and RDX:combustion mechanism and influence on modern double-base propellant combustion.J Propuls Power,1995.

    [15]Elbasuney S,Fahd A,Mostafa HE.Combustion characteristics of extruded double base propellant based on ammonium perchlorate/aluminum binary mixture.Fuel 2017;208(Supplement C):296-304.

    [16]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [17]Mohamed AK,Mostafa HE,Elbasuney S.Nanoscopic fuel-rich thermobaric formulations:chemical composition optimization and sustained secondary combustion shock wave modulation.J Hazard Mater 2016;301:492-503.

    [18]Elbasuney S,Elsaidy A,Kassem M,Tantawy H.Stabilized super-thermite colloids:a new generation of advanced highly energetic materials.Appl Surf Sci 2017;419:328-36.

    [19]Meyer R,J.K.,Homburg A.Explosives.Sixth Edition ed.sixth ed.Weinheim:Wiley-VCH&Co.KGaA;2007.

    [20]Yaman Hayri,Ercan Degˇirmenci V?.Experimental investigation of the factors affecting the burning rate of solid rocket propellants.Fuel 2014;115:794-803.

    [21]Mocella JACCJ.Chemistry of pyrotechnics,basic principles and theory.USA:Taylor&Francis Group,an informa business;2010.

    [22]CS.,D.,Ultra-ultrahigh burning rate composite modified double-base propellants containing porous ammonium perchlorate.1990.

    [23]Meyer R,Kohler J,Homburg A,editors.Explosives.sixth ed.Weinheim:Wiley;2007.

    [24]Cohen-NIr.Combustion characteristics of advanced nitramine-based propellants.Int Symp Combust 1991;18:195-205.

    [25]Kubota N.Survey of rocket propellants and the combustion characteristics.Fundam Solid Propellant Combust 1984.

    [26]Sutton GP,Biblarz O.Solid propellant rocket fundamentals(p 426-430).In:Rocket propulsion elements.Wiley;2011.p.426-30.

    [27]G.B.Manelis,G.M.N.,Y.I.Rubtsov,V.A.Strunin,Thermal decomposition and combustion of explosives and propellants.

    [28]Albrecht,G.,Milit¨artechnik,1987.5,267.

    [29]Bohn MA.The use of kinetic equations to evaluate the ageing behaviour of energetic materials-possible problems.In:11th symp.on chemical problems connected with the stability of explosives,Bastad;1998[Sweden].

    [30]Manelis GB.In:Francis T,editor.Thermal decomposition and combustion of explosives and propellants;2003.p.210-5.

    [31]Vogelsanger B,B.O.,Schadeli U,Antenen D,Ryf K.Ballistic shelf life of propellants for medium and small calibre ammunition-influence of deterrent diffusion and nitrocellulose degradation.In:19th internafional symposium of ballisfics;2001.

    [32]Nobelkrut B.Analytical methods for powders and explosives.1974[Sweden].

    [33]Davenas A.Solid rocket propulsion technology.New York:Pergamon Press;1993.

    [34]Vogelsanger B.Chemical stability,compatibility and shelf life of explosives.2004.Chimia.

    [35]Hartman K-0,Musso RC.The thermal decomposition of nitroglycerine and its relation to the stability of CMDB propellants.CA:The Combustion Institute;1972.p.29.WSCI 72-30.

    [36]Elrick,D.E.,US Patent 3.1975.

    [37]S.W.Beckwith and H.B.Carroll,J.,Spacecraft Rockets,in Spacecraft Rockets,.1985.p.156-161.

    [38]Machida H,A.Y.,Sumikawa K,Suzuki N,Fukuda T,Sumi K,et al.In:Seventeenth int.Jahrestag Fraunhofer inst.Treib explosivst.,Karlsruhe;1986.

    [39]United States,O.T.A.C.,Disposal of chemical weapons:alternative technologies:DIANE Publishing.

    [40]Asthana SN,C.N.D,Singh H.J Hazard Mater 1989;21:35-46.

    [41]Guidelines for safe storage and handling of reactive materials.Wiley;2010.

    [42]Zukas JA,Walters W,Walters WP.Explosive effects and applications.New York:Springer;2002.

    [43]Bromberger CG,H.R.B.,Conduit CP,Howard AJ.The stability of colloidal propellants:Part 3:high impulse compositions.London,UK:Explosives Research Development Establishment;1960.

    [44]Conduit CP.The stability of colloidal propellants:Part 5:the rates of heat generation and critical charge sizes for a composite modified cast double-base propellants.London,UK:Explosives Research Development Establishment;1962.

    [45]Bunyan P.In:12th symposium on the chemical problems connected with the stability of explosives;2001[Sweden].

    [46]Teipel U.Energetic materials:particle processing and characterization.Wiley;2006.

    [47]Asthana SN,R.B.G.,Singh H.J Hazard Mater 1990;23:235-44.

    [48]Ruth Tunnell MA,Dale Roz,Tod Dave,Proud William G.Ammonium perchlorate,friend or Foe?Part 1:the influence of this antioxidizer on the aging behavior of propellant compositions.Propellants Explos Pyrotech 2010;35:1-7.

    [49]Bhalerao MM,G.K.G.,Subramanian GV,Singh SN.Nitramine double base propellants.Def Sci J 1996;46:207-14.

    [50]Lewis TJ.The effect of processing variations on the ballistics of fast burning extruded double base propellants.In:AIAA 14th joint propulsion conference;1978.

    [51]Yan Q-L,Li X-J,Wang Y.Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines(I):the effect of heat and mass transfer to the burning characteristics.Combust Flame 2009;156(3):633-41.

    [52]Huggins RA.Energy storage.US:Springer;2010.

    [53]Zihlman FA.Method of testing propellant stability.Google Patents;1960.

    [54]Frys O,P.B.,Eisner A,Skladal J,Ventura K.Utilization of new non-toxic substances as stabilizers for nitrocellulose-based propellants.Propell Explos Pyrotech 2011;23:22-9.

    [55]Djalal Trache aKK.Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time.Fire Mater 2013;37:328-36.

    [56]Jelisavac L.Life-time prediction of double-base propellants in accordance with Serbian and NATO standards.Sci Tech Rev 2010;60(1):12-8.

    [57]MA B.Prediction of equivalent time-temperature loads for accelerated ageing to simulate preset in-storage ageing and time-temperature profile loads.In:Proceeding of the 40th international annual conference of ICT;2009[Germany,Karlsruhe].

    [58]Lurie B,V.K.,Svetlov B.In:11th symposium on the chemical problems connected with the stability of explosives;1998.p.267-87.Sweden.

    猜你喜歡
    顆粒飼料技術(shù)參數(shù)社會(huì)效益
    青貯玉米顆粒飼料用于草魚飼養(yǎng)的初步探究
    新車技術(shù)參數(shù)
    新車技術(shù)參數(shù)
    烏蘭牧騎社會(huì)效益研究
    好刊社會(huì)效益高
    特別健康(2018年9期)2018-09-26 05:45:20
    車型技術(shù)參數(shù) 4 x 4 Vehicle Data List
    越玩越野(2016年2期)2016-12-26 04:02:14
    利用顆粒飼料養(yǎng)魚好處多
    快速檢測方法在顆粒飼料淀粉糊化度中的應(yīng)用
    論股票價(jià)格準(zhǔn)確性的社會(huì)效益
    春蠶1~2齡顆粒飼料育試驗(yàn)初報(bào)
    国产亚洲精品久久久久5区| 国产一级毛片七仙女欲春2 | 校园春色视频在线观看| 18禁美女被吸乳视频| 亚洲激情在线av| 国产免费男女视频| 精品熟女少妇八av免费久了| 国产精品亚洲av一区麻豆| 欧美大码av| 色综合婷婷激情| 国产日韩一区二区三区精品不卡| 成人亚洲精品av一区二区| 亚洲在线自拍视频| 韩国av一区二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 精品国内亚洲2022精品成人| 搡老熟女国产l中国老女人| 少妇 在线观看| 97碰自拍视频| 老司机靠b影院| 国产精品久久久av美女十八| 18禁国产床啪视频网站| 精品久久久久久久毛片微露脸| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久,| 亚洲激情在线av| av在线天堂中文字幕| 18美女黄网站色大片免费观看| 国产成人一区二区三区免费视频网站| 亚洲avbb在线观看| 日日爽夜夜爽网站| 女性被躁到高潮视频| 欧美亚洲日本最大视频资源| 麻豆成人av在线观看| 老司机在亚洲福利影院| 欧美亚洲日本最大视频资源| 国产一区在线观看成人免费| 久久精品影院6| 亚洲欧美一区二区三区黑人| 日韩高清综合在线| bbb黄色大片| 老司机午夜福利在线观看视频| 亚洲第一电影网av| 精品卡一卡二卡四卡免费| 亚洲熟女毛片儿| 男女午夜视频在线观看| 婷婷六月久久综合丁香| 国产精品九九99| 免费人成视频x8x8入口观看| 99香蕉大伊视频| 法律面前人人平等表现在哪些方面| 国产激情欧美一区二区| 欧美激情久久久久久爽电影 | 亚洲精品久久国产高清桃花| 老司机午夜十八禁免费视频| 国产高清videossex| 久久久久久久久免费视频了| 国产伦一二天堂av在线观看| 国产乱人伦免费视频| 此物有八面人人有两片| 午夜免费观看网址| 黑丝袜美女国产一区| 一本久久中文字幕| 桃色一区二区三区在线观看| 日韩欧美国产在线观看| 久久 成人 亚洲| 97人妻天天添夜夜摸| 波多野结衣高清无吗| 国产欧美日韩一区二区三| av在线天堂中文字幕| 99精品久久久久人妻精品| 久久久久精品国产欧美久久久| 欧美日本视频| 久久久久久免费高清国产稀缺| 日韩成人在线观看一区二区三区| 99精品欧美一区二区三区四区| 日本 av在线| 欧美午夜高清在线| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看| 国产亚洲精品久久久久5区| 亚洲五月婷婷丁香| 大型av网站在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲av电影不卡..在线观看| 日日爽夜夜爽网站| 一级a爱视频在线免费观看| 最好的美女福利视频网| 国产精品免费一区二区三区在线| 色综合站精品国产| 又大又爽又粗| 成人国语在线视频| 国产精品电影一区二区三区| 成年版毛片免费区| 精品电影一区二区在线| 午夜免费观看网址| 51午夜福利影视在线观看| 国产精品美女特级片免费视频播放器 | 日韩欧美免费精品| 午夜精品在线福利| 成人三级做爰电影| 午夜日韩欧美国产| 亚洲熟女毛片儿| av在线播放免费不卡| 视频区欧美日本亚洲| 狠狠狠狠99中文字幕| 国产精品秋霞免费鲁丝片| 怎么达到女性高潮| 国产乱人伦免费视频| 人人妻人人澡欧美一区二区 | 亚洲在线自拍视频| 97人妻天天添夜夜摸| 久久国产乱子伦精品免费另类| 久久久水蜜桃国产精品网| 日韩高清综合在线| 亚洲第一欧美日韩一区二区三区| 法律面前人人平等表现在哪些方面| 欧美日本视频| 欧美亚洲日本最大视频资源| 他把我摸到了高潮在线观看| 制服丝袜大香蕉在线| 久久久国产成人免费| 久久影院123| 国产精品99久久99久久久不卡| 亚洲国产精品999在线| 国产精品日韩av在线免费观看 | 精品一区二区三区视频在线观看免费| 美女午夜性视频免费| 亚洲九九香蕉| 精品熟女少妇八av免费久了| 精品第一国产精品| 老熟妇乱子伦视频在线观看| 午夜福利18| 久久影院123| 国产99久久九九免费精品| 亚洲人成网站在线播放欧美日韩| 欧美在线黄色| 国产精品精品国产色婷婷| 欧美色视频一区免费| 国产av一区在线观看免费| 免费在线观看视频国产中文字幕亚洲| 日韩欧美国产一区二区入口| 日韩欧美一区二区三区在线观看| 99国产精品一区二区蜜桃av| 国产97色在线日韩免费| 中文字幕高清在线视频| 在线观看www视频免费| 午夜精品国产一区二区电影| 亚洲成av片中文字幕在线观看| 国产精品久久视频播放| 在线av久久热| 在线国产一区二区在线| 亚洲精品在线美女| 一级a爱片免费观看的视频| 国产三级黄色录像| 一区二区三区精品91| 正在播放国产对白刺激| 色老头精品视频在线观看| 女人高潮潮喷娇喘18禁视频| 国产黄a三级三级三级人| 给我免费播放毛片高清在线观看| 多毛熟女@视频| 激情在线观看视频在线高清| 国产在线观看jvid| 午夜亚洲福利在线播放| 免费不卡黄色视频| 看片在线看免费视频| 老司机靠b影院| 岛国视频午夜一区免费看| www.www免费av| 午夜久久久久精精品| 亚洲午夜精品一区,二区,三区| 精品久久久久久,| av在线天堂中文字幕| 很黄的视频免费| 日日摸夜夜添夜夜添小说| 12—13女人毛片做爰片一| 天堂动漫精品| 91国产中文字幕| 欧美久久黑人一区二区| 欧美成人午夜精品| 亚洲成人国产一区在线观看| 一边摸一边抽搐一进一小说| 国产精品久久电影中文字幕| 又黄又爽又免费观看的视频| av天堂在线播放| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 国产精品电影一区二区三区| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 禁无遮挡网站| 久久人人爽av亚洲精品天堂| 女同久久另类99精品国产91| 久热这里只有精品99| 亚洲精品中文字幕一二三四区| 亚洲一区高清亚洲精品| 久久国产亚洲av麻豆专区| 午夜视频精品福利| 女人高潮潮喷娇喘18禁视频| videosex国产| 精品无人区乱码1区二区| 99国产精品99久久久久| 国产欧美日韩一区二区三区在线| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| 人人澡人人妻人| 国产一区二区三区视频了| 男女床上黄色一级片免费看| 99在线视频只有这里精品首页| 国产精品电影一区二区三区| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 一进一出抽搐动态| 久久精品国产综合久久久| 亚洲第一av免费看| 香蕉丝袜av| 成年女人毛片免费观看观看9| 欧美 亚洲 国产 日韩一| 国产xxxxx性猛交| 夜夜爽天天搞| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情 高清一区二区三区| 制服诱惑二区| 免费一级毛片在线播放高清视频 | 国内精品久久久久久久电影| 精品国产国语对白av| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 在线播放国产精品三级| 亚洲三区欧美一区| 欧美激情极品国产一区二区三区| 亚洲欧美激情综合另类| 欧美 亚洲 国产 日韩一| 久久亚洲精品不卡| 亚洲人成电影观看| 黄色a级毛片大全视频| 男人舔女人的私密视频| 亚洲人成77777在线视频| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影 | 亚洲在线自拍视频| 亚洲专区中文字幕在线| 久久久精品欧美日韩精品| www国产在线视频色| 免费无遮挡裸体视频| 午夜免费观看网址| 欧美色视频一区免费| 精品卡一卡二卡四卡免费| 一级a爱片免费观看的视频| 午夜福利在线观看吧| 九色国产91popny在线| 精品电影一区二区在线| 久久人妻福利社区极品人妻图片| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 国产午夜精品久久久久久| 精品国产一区二区久久| 91九色精品人成在线观看| 99re在线观看精品视频| 欧美成人一区二区免费高清观看 | 久久人人精品亚洲av| 亚洲中文av在线| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| 丁香欧美五月| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 少妇粗大呻吟视频| 极品教师在线免费播放| 日韩欧美在线二视频| 国产一级毛片七仙女欲春2 | 麻豆av在线久日| 淫妇啪啪啪对白视频| 欧美日韩黄片免| 日韩视频一区二区在线观看| 精品日产1卡2卡| 精品少妇一区二区三区视频日本电影| 午夜福利,免费看| 极品人妻少妇av视频| 两性午夜刺激爽爽歪歪视频在线观看 | 最近最新中文字幕大全免费视频| 中出人妻视频一区二区| 欧美成人午夜精品| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 欧美成人午夜精品| 成人亚洲精品一区在线观看| 老司机福利观看| 精品国产超薄肉色丝袜足j| 成在线人永久免费视频| 法律面前人人平等表现在哪些方面| 亚洲精品国产区一区二| 久久中文字幕一级| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 亚洲欧美一区二区三区黑人| 欧美大码av| 日本五十路高清| 一级片免费观看大全| 日韩大尺度精品在线看网址 | 久久久国产成人精品二区| 一二三四在线观看免费中文在| 亚洲久久久国产精品| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 啦啦啦 在线观看视频| 女人被狂操c到高潮| 黄网站色视频无遮挡免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 高清在线国产一区| 伊人久久大香线蕉亚洲五| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 99久久久亚洲精品蜜臀av| 久久人妻熟女aⅴ| 国产精品一区二区免费欧美| av中文乱码字幕在线| 国产精品久久视频播放| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机深夜福利视频在线观看| 亚洲视频免费观看视频| 国产成人一区二区三区免费视频网站| 欧美精品啪啪一区二区三区| 国产精品二区激情视频| 99在线视频只有这里精品首页| 亚洲天堂国产精品一区在线| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清 | 一二三四在线观看免费中文在| 久热这里只有精品99| 黄频高清免费视频| 国产在线精品亚洲第一网站| 亚洲美女黄片视频| 午夜免费激情av| 亚洲av片天天在线观看| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 色老头精品视频在线观看| 在线天堂中文资源库| 99久久综合精品五月天人人| 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲真实| 国内精品久久久久精免费| 欧美在线黄色| 在线观看免费午夜福利视频| 777久久人妻少妇嫩草av网站| 美女高潮到喷水免费观看| 午夜久久久在线观看| 一进一出抽搐gif免费好疼| 满18在线观看网站| 一级毛片精品| 午夜a级毛片| 非洲黑人性xxxx精品又粗又长| 黄色成人免费大全| 视频区欧美日本亚洲| 亚洲欧洲精品一区二区精品久久久| 日韩精品青青久久久久久| 在线观看午夜福利视频| 亚洲国产日韩欧美精品在线观看 | 久久久国产欧美日韩av| 高清毛片免费观看视频网站| 精品久久久精品久久久| 岛国视频午夜一区免费看| 可以免费在线观看a视频的电影网站| 亚洲中文字幕一区二区三区有码在线看 | 最近最新中文字幕大全免费视频| 免费观看精品视频网站| 男女下面进入的视频免费午夜 | 日韩大码丰满熟妇| 一本综合久久免费| 天堂√8在线中文| 欧美另类亚洲清纯唯美| 97碰自拍视频| a在线观看视频网站| av电影中文网址| 久久精品影院6| www.精华液| 午夜免费成人在线视频| 黄片大片在线免费观看| 色婷婷久久久亚洲欧美| 国产精品日韩av在线免费观看 | 亚洲自拍偷在线| 99在线视频只有这里精品首页| 97人妻天天添夜夜摸| 极品教师在线免费播放| 50天的宝宝边吃奶边哭怎么回事| 一a级毛片在线观看| 三级毛片av免费| 亚洲三区欧美一区| 日日干狠狠操夜夜爽| 中文字幕高清在线视频| 亚洲成人国产一区在线观看| 91精品三级在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久欧美精品欧美久久欧美| 国产精品 国内视频| 国产熟女xx| 变态另类丝袜制服| 天堂影院成人在线观看| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看 | 免费搜索国产男女视频| 窝窝影院91人妻| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 91av网站免费观看| 99国产精品99久久久久| 日韩欧美三级三区| 日韩欧美在线二视频| 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 一区二区三区激情视频| av网站免费在线观看视频| 欧美日本视频| 久久香蕉国产精品| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 亚洲免费av在线视频| 黑人巨大精品欧美一区二区mp4| 日本精品一区二区三区蜜桃| 极品人妻少妇av视频| 女性被躁到高潮视频| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品久久男人天堂| 搡老岳熟女国产| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 久久精品人人爽人人爽视色| 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱 | 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品99久久99久久久不卡| а√天堂www在线а√下载| 黑人操中国人逼视频| 亚洲精品粉嫩美女一区| 午夜免费鲁丝| 日韩欧美三级三区| 国产精品一区二区在线不卡| 亚洲精品久久成人aⅴ小说| 婷婷丁香在线五月| 此物有八面人人有两片| 久99久视频精品免费| 国产一级毛片七仙女欲春2 | 99久久国产精品久久久| 一本大道久久a久久精品| 国产精品,欧美在线| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 成人三级黄色视频| 亚洲成a人片在线一区二区| 99国产极品粉嫩在线观看| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 国产99白浆流出| a在线观看视频网站| 黑人巨大精品欧美一区二区mp4| a级毛片在线看网站| 激情在线观看视频在线高清| 两个人视频免费观看高清| 国产免费男女视频| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 视频区欧美日本亚洲| 精品高清国产在线一区| 久久精品人人爽人人爽视色| 麻豆一二三区av精品| 欧美日韩中文字幕国产精品一区二区三区 | 在线国产一区二区在线| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 国产私拍福利视频在线观看| 国产片内射在线| 少妇被粗大的猛进出69影院| √禁漫天堂资源中文www| 精品人妻在线不人妻| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 中文字幕色久视频| 丁香欧美五月| 成人亚洲精品av一区二区| 亚洲片人在线观看| 日韩欧美在线二视频| 两个人免费观看高清视频| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 国产片内射在线| 国产精品免费一区二区三区在线| xxx96com| 人人妻人人爽人人添夜夜欢视频| 高潮久久久久久久久久久不卡| 天堂√8在线中文| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| 怎么达到女性高潮| 国产一区二区三区综合在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩精品亚洲av| 国产1区2区3区精品| av有码第一页| 国产亚洲精品综合一区在线观看 | 天天躁夜夜躁狠狠躁躁| 国产极品粉嫩免费观看在线| 自线自在国产av| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av| 大码成人一级视频| avwww免费| 国内久久婷婷六月综合欲色啪| 在线永久观看黄色视频| 国产aⅴ精品一区二区三区波| 免费在线观看完整版高清| 欧美一级a爱片免费观看看 | 久久婷婷成人综合色麻豆| 久99久视频精品免费| 日韩精品青青久久久久久| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 成人国语在线视频| 亚洲国产看品久久| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看完整版高清| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 国产成人精品久久二区二区免费| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影 | 亚洲成人免费电影在线观看| 99在线视频只有这里精品首页| 久久人人97超碰香蕉20202| av在线播放免费不卡| 高清在线国产一区| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 极品教师在线免费播放| 又黄又爽又免费观看的视频| 久久精品成人免费网站| 国产一区二区三区视频了| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站| 精品一品国产午夜福利视频| 最近最新中文字幕大全电影3 | 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3 | 久久国产精品男人的天堂亚洲| 亚洲国产精品久久男人天堂| 欧美黑人欧美精品刺激| 日日夜夜操网爽| 精品久久久久久久毛片微露脸| 久久精品亚洲熟妇少妇任你| 电影成人av| 久久久久久免费高清国产稀缺| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| 亚洲国产精品久久男人天堂| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| а√天堂www在线а√下载| 女同久久另类99精品国产91| 一边摸一边抽搐一进一小说| 国产成人欧美| 午夜福利视频1000在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区 | 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 欧美日韩精品网址| 波多野结衣一区麻豆| av天堂在线播放| 日韩欧美在线二视频| 天堂√8在线中文| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| 妹子高潮喷水视频| 亚洲人成伊人成综合网2020| 国产一区在线观看成人免费| 久久久久久久久免费视频了| 91成年电影在线观看| 岛国在线观看网站| 后天国语完整版免费观看| 人人妻人人澡欧美一区二区 | 国产欧美日韩一区二区三| 久久 成人 亚洲| 69av精品久久久久久| 精品一区二区三区视频在线观看免费| 三级毛片av免费| 一区二区日韩欧美中文字幕| 亚洲色图综合在线观看| 亚洲av第一区精品v没综合| 国产精品乱码一区二三区的特点 | 亚洲国产高清在线一区二区三 | 国产色视频综合| 村上凉子中文字幕在线| 亚洲天堂国产精品一区在线| 亚洲中文av在线| 日韩精品中文字幕看吧| 波多野结衣一区麻豆| 国产精品久久久av美女十八|