• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multidisciplinary Design Optimization with a New Effective Method

    2010-03-01 01:48:54CHENXiaokaiLIBangguoandLINYi

    CHEN Xiaokai, LI Bangguo, and LIN Yi

    National Engineering Laboratory of Electric Vehicle, Beijing Institute of Technology, Beijing 100081, China

    1 Introduction

    Collaborative optimization (CO) is a new design architecture to tackle the large-scale, distributed-analysis application often found in industry[1]. CO was originally proposed in 1994. It is one of several decomposition based methods that divide a design problem along disciplinary (or other convenient) boundaries. It consists of two-level optimization problems which are system optimization problem and subspace optimization problem. System optimizer optimizes the multidisciplinary variable (system level target)z to satisfy the interdisciplinary constraints while minimizing the system objective. Subspace optimizer minimizes the interdisciplinary compatibility constraints,while satisfying the subspace constraints. Relative to other decomposition-based methods, CO provides the disciplinary subspace with an unusually high level of autonomy[2].

    The basic CO formulation is composed of system level and subspace level, the system level is given by Eq. (1)[2]:

    where F (z) is global objective, z is variable (i.e., system level targets for shared variables),is subspace target response that provides each subspace’s best attempt to meet the system level targets (z), and it is a parameter in system level, n is the number of subspaces.

    The lower subspace level is illustrated in Eq. (2):

    where x is an independent shared variable, xlis a local variable, which is relative only to the local subspace. On the basis of analyzing y = y (x, xl),y is coupling variable,is shared variable, z is a parameter,is a local constraint.

    The subspace objective tries to match targets for the shared variables that have been sent by the system level[2].The dependent variables in subspace level include shared variables (xs) and local variables (xl). The shared variables include both independent variables (x) and coupling variables (y).

    CO has been successfully applied to a variety of mathematical problems and engineering design problems,and used for the conceptual design of launch vehicles[3],high speed civil transports[4], and unmanned aerial vehicles[5]. However, the method also suffers from some challenges, which has been documented by ALEXANDROV, DEMIGUEL, et al[6–8]. They highlighted the features of CO that has an adverse effect on robustness and computational efficiency.

    Three difficulties of the bi-level optimization problem stated in Eqs. (1) and (2) are considered.

    (1) The system level Jacobian is singular at the solution[6]. This can be seen by noting that the constraint gradients are given byEven with a robust optimizer, this has an adverse impact on the rate of convergence.

    (2) The Lagrange multipliers in the subspace problem are either zeroes or converge to zeroes as z converges toThis greatly affects subspace convergence.

    (3) The subspace response ( Ji) is, in general, nonsmooth functions of the targets z[8]. As a result, the system level constraints are nonsmooth, hindering local and global convergence proofs for the system level problem.

    In CO, the system compatibility constraints are equality constraints of quadratic forms, which often lead to some problems of convergence. Because of the quadratic equality constraints, CO also strongly depends on the initial condition for convergence. Inefficient convergence is often caused when gradient-based method is used.

    The basic concept to enhance CO is to modify the system constraints, which cause the convergence difficulties[10]. The current research is focused on using the nature of the subspace problem, therefore the optimum constraints sensitivity is presented to find the closet point from the target point, while satisfying all disciplinary constraints.

    2 Description of the Method

    AZARM and LI[11]gave the formulation of a two level design optimization with an separable objective and separable constraints. The formation is given by Eq. (3) :

    where f is an integrated objective function, fiis an objective function in subspace i.

    The Karush-Kuhn-Tucker (KKT) condition for this problem is given by Eq. (4):

    According to the two-level design optimization problem,CO can be written as another form. System level problem is given by Eq. (5), and subspace problems are given by Eq.(6):

    The KKT optimality condition for subspace level optimization problem can be written as follows:

    In CO, z is fixed and x is varied in subspace problem,we should have

    Likewise, the KKT conditions for the system level optimization problem can be written as follows:

    For CO, the variables in disciplinary optimization problem consist of shared variables and local variables, the KKT conditions for shared variables and local variables can be written as

    CO synergizes the disciplinary problem via shared variables, according to Eqs. (4)–(9), a formulation can be obtained as follows:

    Once the shared variables have been identified, Eq. (12)can be used to obtain. Likewise, Eq. (12) can be used by an optimization method which does not yield the value of ui.

    In CO, to modify the system level constraints, we define the derivative of local constraints while the variables areas the optimum sensitivity of disciplinary constraints according to the idea described above. That is

    The optimum sensitivity of disciplinary constraints can reflect the changing information of disciplinary constraints,which enable the system level optimizer to know the boundary where the subspace objectives are zeroes.Through the optimum constraints sensitivity, the linear dynamic constraints of system level can be constructed by Taylor expansion around the subspace optimum as follows:

    Where i is the number of disciplinary optimization problems, m is the dimension of local variables lx, n is the dimension of independent shared variables x.

    These new constraints are linear constraints of variable z in system level, which can avoid the computational difficulties caused by the original quadratic equation constraints.is the constraint value when x = x*and, which is optimal value of each disciplinary optimization. Through these linear dynamic constraints, the optimized information of subspace optimization can be sent to the system level, which reinforces the exchange between system level and subspace level. The reformed CO is referred to as system level linear dynamic constraints collaborative optimization (DCCO).

    3 Flow of DCCO

    The solution process begins with an initial set of system level design variable z0. This variable is sent to the subspace optimization problems and treated as a set of fixed parameters. The subspace optimization problems are then solved while satisfying the subspace constraint ci.The parameterandare optimized in this optimization.

    Then on the basis of

    The system level optimizer determines whether the design variable z0satisfies the new constraints. Until now one whole optimization is finished. The process is repeated until z reaches the optimum.

    4 Analytic Test Case and Application

    This section illustrates the application of DCCO. The results of a typical functional optimization problem and a gear reducer optimization problem are compared with those obtained via the original version of CO. All problems were solved by sequential quadratic programming (SQP) method based on optimizer: NPSOL.

    4.1 Typical function optimization problem

    BRAUN[1]solved this typical function optimization problem via original version of CO. This problem is a constraint nonlinear problem, and its mathematical model is

    where β is a parameter, and β= 0.1. This problem is decomposed in the following manner. The system level problem and subspace level problem are described respectively.

    The problem is solved by original version of CO, and system level problem is as follows:

    Disciplinary problem 1:

    Disciplinary problem 2:

    The problem is solved by DCCO, and the system level problem is as follows:

    Disciplinary problem 3:

    Disciplinary problem 4:

    The results of this example are summarized in Table 1.For all cases, CO and DCCO methods could be used to solve this problem. Compared with CO of original version,the reformed method greatly reduces the number of the system level iteration. The results of this problem areand x2= 1.9 80. Conclusion can be drawn that the DCCO is more accurate than the original version of CO.

    Table 1. Results of the typical function optimization problem solved by CO and DCCO

    4.2 Example 2: gear reducer design problem

    A well-known gear reducer example is presented in this section (see Fig. 1). The example is conducted to illustrate the effectiveness of this approach. The test problem is taken from AZARM, et al[11]. The objective of this optimization problem is to minimize the overall volume (or weight) of the speed reducer.

    Fig. 1. Model of gear reducer example

    There are 7 variables in this example, and the design variables are expressed as follows:

    x1—Gear face width, 2.6 cm ≤ x1≤3.6 cm;

    x2—Teeth module, 0.7 cm ≤ x2≤0.8 cm;

    x3—Number of teeth of opinion, 17 ≤ x3≤28;

    x4—Distance between bearing 1, 7.3 cm ≤ x4≤8.3 cm;

    x5—Distance between bearing 2, 7.3 cm ≤ x5≤8.3 cm;

    x6—Diameter of shaft 1, 2.9 cm ≤ x6≤3.9 cm;

    x7—Diameter of shaft 2, 5 cm ≤ x7≤5.5 cm.

    The nonlinear programming statement for this example is presented:

    The gear reducer is decomposed into three disciplinary D1, D2, D3as follows:

    This problem is solved by DCCO, and the system level problem is as follows:

    where i is the number of disciplinary problems,j is coupling constraints.

    Disciplinary problem 5:

    Disciplinary problem 6:

    Disciplinary problem 7:

    According to the range of design variables, choose X = (3.6, 0.8, 28, 7.3, 7.3, 2.9, 5.0) as the test design variable. The optimization process begins at X. Table 2 shows the summarized results of the given test design variables using DCCO method and CO method.

    The original objective value is 6 533.6, after 25 iteration of system level optimizer, the objective function f (x)converges at 2 993.2, which is the final objective function value.

    Table 2 also shows the summarized results of the given test design variables using CO method. The final objective function converges at 5 314.4, which is not the precise result of the optimization problem. AZARM, et al[12], gave the results of this problem. Design variables X is (3.5, 0.7,17, 7.3, 7.71, 3.35, 5.29), and objective function is 2 994.Now a conclusion can be drawn that the reformed collaborative optimization is effective to solve this multidisciplinary problem.

    Fig. 2 gives the objective function iteration history via DCCO, which reveals the detailed convergence process.

    Table 2. Results of the gear reducer optimization problem via DCCO and CO

    Fig. 2. Objective function iteration history via DCCO

    5 Conclusions

    (1) A new approach is investigated to modify collaborative optimization. The new approach is focused on making a breakthrough to find an approximate model of system constraints that allow system to converge faster and more robustly.

    (2) A system-level linear dynamic collaborative optimization is presented by modifying the compatibility constraints of the original version of collaborative.

    (3) Results of analytic analysis cases reveal that the reformed collaborative optimization can significantly improve system convergence and save computational time,compared to collaborative optimization. The price for this computational savings is a small increase in the complexity of constructing the system level constraints.

    (4) The modified system level constraints are linear dynamic constraints, which can avoid some computational difficulties caused by the quadratic constraints contrast to the quadratic equality constraints of the original version of collaborative optimization.

    [1] BRAUN R D. Collaborative optimization: an architecture for large-scale distributed design[D]. Palo Alto: Stanford University,1996.

    [2] ROTH B, KROO I. Enhanced collaborative optimization: Application to analytic test problem and aircraft design[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,Victorian, British Columbia Canada, 10–12 September, 2008.

    [3] BRAUN R, KROO I, MOORE A. Use of the collaborative optimization architecture for launch vehicle design[C]//6th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Reston, VA, Sept. 4–6, 1996.

    [4] MANNING V. Larger-scale design of supersonic aircraft via collaborative optimization[D]. Palo Alto: Stanford University, 1999.

    [5] SOBIESKI I. Multidisciplinary design using collaborative optimization[D]. Palo Alto: Stanford University, 1998.

    [6] ALEXANDROV N M, LEWIS R. Analytical and computational aspects of collaborative optimization and multidisciplinary design[J]. AIAA Journal, 2002, 40(2): 301–309.

    [7] ALEXANDROV N M, LEWIS R. Comparative properties of collaborative optimization and other approaches to MDO[M].Bradford: MCB University Press, 1999.

    [8] DEMIGUEL A, MURRAY W. An analysis of collaborative optimization methods[C]//8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach,CA, 2000.

    [9] ALEXANDROV N M, LEWIS R. Engineering design optimization[M]. Bradford: MCB University Press, 1999.

    [10] KOBAYASHI K, KROO I. The new effective MDO method based on collaborative optimization[C]//35th AIAA Fluid Dynamics Conference and Exhibit, 6–9 June, 2005, Toronto, Ontario Canada,AIAA Paper No. 2005–4799.

    [11] AZARM S, LI W C. Optimality and constrained derivatives in Two-level Design Optimization[J]. ASME Journal of Mechanical Design, 1990, 112 (12): 563–568.

    [12] AZARM S, LI W C. Multi-level design optimization using global momonicity analysis[J]. ASME Journal of Mechanisms and Automation in Design, 1989, 11(2): 259–263.

    国产精品美女特级片免费视频播放器 | 91大片在线观看| 18禁观看日本| 一二三四在线观看免费中文在| 人人澡人人妻人| 成人三级做爰电影| 日韩一卡2卡3卡4卡2021年| 精品无人区乱码1区二区| 精品熟女少妇八av免费久了| 18美女黄网站色大片免费观看| 亚洲av日韩精品久久久久久密| 欧美激情 高清一区二区三区| 国产男靠女视频免费网站| 久久久久久人人人人人| 好男人电影高清在线观看| 亚洲欧美精品综合一区二区三区| 一区二区三区国产精品乱码| 亚洲国产欧美网| 在线播放国产精品三级| 成人精品一区二区免费| 麻豆成人av在线观看| 亚洲欧美日韩另类电影网站| 久久香蕉精品热| 9热在线视频观看99| 亚洲欧美激情在线| 777久久人妻少妇嫩草av网站| 99国产精品一区二区三区| 激情在线观看视频在线高清| 少妇粗大呻吟视频| 国产av在哪里看| 精品久久久久久,| 日韩欧美国产一区二区入口| 性色av乱码一区二区三区2| 亚洲九九香蕉| 高清毛片免费观看视频网站 | 日本vs欧美在线观看视频| 精品一区二区三区四区五区乱码| 国产成人av教育| 免费在线观看亚洲国产| 一级片'在线观看视频| 国产高清国产精品国产三级| 久久午夜综合久久蜜桃| 中文亚洲av片在线观看爽| 精品人妻在线不人妻| 亚洲av熟女| 91麻豆av在线| 欧美不卡视频在线免费观看 | 国产日韩一区二区三区精品不卡| 999精品在线视频| 88av欧美| 欧美日韩福利视频一区二区| 国产熟女xx| 亚洲精品在线观看二区| 精品免费久久久久久久清纯| √禁漫天堂资源中文www| 欧美日韩av久久| 午夜a级毛片| 国产成人精品久久二区二区91| 精品久久蜜臀av无| 亚洲欧美精品综合一区二区三区| 天堂动漫精品| 操出白浆在线播放| 国产成+人综合+亚洲专区| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 人妻久久中文字幕网| 岛国在线观看网站| 国产91精品成人一区二区三区| 视频在线观看一区二区三区| 脱女人内裤的视频| 涩涩av久久男人的天堂| 亚洲av熟女| 国产成人啪精品午夜网站| 老司机在亚洲福利影院| 十八禁网站免费在线| 波多野结衣一区麻豆| 脱女人内裤的视频| 亚洲国产精品sss在线观看 | 搡老熟女国产l中国老女人| 新久久久久国产一级毛片| 俄罗斯特黄特色一大片| 色尼玛亚洲综合影院| 国产精品免费视频内射| 亚洲熟妇中文字幕五十中出 | 亚洲自拍偷在线| 男女之事视频高清在线观看| 国产精品 欧美亚洲| 久久午夜亚洲精品久久| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 国产精品免费视频内射| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 亚洲免费av在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | www.www免费av| 久久人人爽av亚洲精品天堂| 久久久久亚洲av毛片大全| 国产亚洲精品久久久久5区| 久久精品国产99精品国产亚洲性色 | 久久精品国产99精品国产亚洲性色 | 久久人妻av系列| 不卡一级毛片| 嫩草影院精品99| 欧美日韩一级在线毛片| 欧美精品啪啪一区二区三区| 黄片小视频在线播放| 麻豆国产av国片精品| 丁香六月欧美| 成人三级黄色视频| 一区二区三区精品91| 一级毛片女人18水好多| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品吃奶| 黄片播放在线免费| 久久久久亚洲av毛片大全| 黄频高清免费视频| xxx96com| 亚洲av成人不卡在线观看播放网| 免费人成视频x8x8入口观看| xxxhd国产人妻xxx| 丁香欧美五月| 制服诱惑二区| 高清欧美精品videossex| av在线播放免费不卡| 亚洲人成电影观看| 在线国产一区二区在线| 黄色女人牲交| 精品无人区乱码1区二区| 日韩国内少妇激情av| 国产精品香港三级国产av潘金莲| 99香蕉大伊视频| 久久精品国产综合久久久| 在线观看一区二区三区激情| 91国产中文字幕| 国产99久久九九免费精品| 国产男靠女视频免费网站| 男女下面插进去视频免费观看| 国产精品永久免费网站| 国产精品影院久久| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 国产成人精品无人区| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 久久99一区二区三区| 国产片内射在线| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 亚洲国产中文字幕在线视频| 亚洲全国av大片| 午夜亚洲福利在线播放| 人妻丰满熟妇av一区二区三区| 婷婷精品国产亚洲av在线| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 丁香欧美五月| 久久午夜亚洲精品久久| 国产成人av激情在线播放| 中文字幕最新亚洲高清| 亚洲一区二区三区欧美精品| 黑人猛操日本美女一级片| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| videosex国产| 亚洲精华国产精华精| 国产欧美日韩综合在线一区二区| 国产av一区在线观看免费| 国产精品电影一区二区三区| 一本综合久久免费| 国产精品香港三级国产av潘金莲| 国产黄色免费在线视频| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| 丁香欧美五月| 一个人观看的视频www高清免费观看 | 不卡av一区二区三区| 在线视频色国产色| 国产一区二区在线av高清观看| 十八禁人妻一区二区| 久久久久久亚洲精品国产蜜桃av| 美女福利国产在线| 亚洲国产欧美日韩在线播放| 99re在线观看精品视频| 国产精品自产拍在线观看55亚洲| 在线观看免费午夜福利视频| 黄色a级毛片大全视频| a级毛片黄视频| 午夜福利一区二区在线看| 在线观看日韩欧美| 午夜激情av网站| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 国产伦一二天堂av在线观看| 欧美日韩视频精品一区| 99riav亚洲国产免费| 99久久国产精品久久久| 日韩欧美在线二视频| 久久久久久久久免费视频了| 精品久久久久久久久久免费视频 | 精品第一国产精品| 看片在线看免费视频| 激情在线观看视频在线高清| 一进一出抽搐gif免费好疼 | 99热国产这里只有精品6| 久久人妻av系列| 亚洲一区中文字幕在线| 亚洲中文字幕日韩| 亚洲专区中文字幕在线| 国产三级黄色录像| 又黄又粗又硬又大视频| 美女国产高潮福利片在线看| 少妇粗大呻吟视频| 999久久久精品免费观看国产| 一区二区三区激情视频| 夜夜躁狠狠躁天天躁| 欧美乱码精品一区二区三区| 国产精品国产高清国产av| 国产精品99久久99久久久不卡| ponron亚洲| 男女做爰动态图高潮gif福利片 | 可以免费在线观看a视频的电影网站| 欧美不卡视频在线免费观看 | 在线十欧美十亚洲十日本专区| 少妇被粗大的猛进出69影院| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 黄片小视频在线播放| 国产亚洲欧美98| 又紧又爽又黄一区二区| 51午夜福利影视在线观看| 欧美久久黑人一区二区| 在线观看免费视频网站a站| 久久久国产成人免费| 久久久久久久久中文| 国产视频一区二区在线看| 日本免费一区二区三区高清不卡 | 男女下面插进去视频免费观看| 黄片小视频在线播放| 美女午夜性视频免费| 男人舔女人下体高潮全视频| 日韩欧美三级三区| 乱人伦中国视频| 久久精品国产亚洲av香蕉五月| 天堂√8在线中文| 99riav亚洲国产免费| 狂野欧美激情性xxxx| 在线观看舔阴道视频| 99国产极品粉嫩在线观看| 亚洲激情在线av| 高清黄色对白视频在线免费看| 免费在线观看日本一区| 亚洲成人国产一区在线观看| av网站在线播放免费| 久久久久久人人人人人| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| av在线天堂中文字幕 | 国产精品香港三级国产av潘金莲| e午夜精品久久久久久久| 超碰97精品在线观看| 男女下面插进去视频免费观看| 怎么达到女性高潮| 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 午夜免费成人在线视频| 久99久视频精品免费| 亚洲精品一卡2卡三卡4卡5卡| 色综合站精品国产| 午夜免费鲁丝| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av| 午夜老司机福利片| 丝袜在线中文字幕| 成人手机av| 亚洲国产精品合色在线| 中文字幕另类日韩欧美亚洲嫩草| 看片在线看免费视频| 精品国产美女av久久久久小说| 国产亚洲欧美98| 12—13女人毛片做爰片一| 欧美成人性av电影在线观看| 成人精品一区二区免费| 一二三四社区在线视频社区8| 欧美日韩亚洲国产一区二区在线观看| 在线视频色国产色| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 桃红色精品国产亚洲av| 在线观看66精品国产| 欧美日韩亚洲综合一区二区三区_| 怎么达到女性高潮| 日本精品一区二区三区蜜桃| 国产高清videossex| 成人三级黄色视频| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 国产亚洲欧美98| 男人舔女人的私密视频| 国产欧美日韩综合在线一区二区| 每晚都被弄得嗷嗷叫到高潮| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 黑丝袜美女国产一区| 精品国产乱子伦一区二区三区| 他把我摸到了高潮在线观看| 成人18禁在线播放| 国产精品久久久人人做人人爽| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线| 99久久国产精品久久久| 97碰自拍视频| 免费在线观看亚洲国产| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 日本免费一区二区三区高清不卡 | 国产99久久九九免费精品| 欧美激情 高清一区二区三区| 国产精品 欧美亚洲| 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 色婷婷av一区二区三区视频| av中文乱码字幕在线| 免费在线观看黄色视频的| 亚洲精品国产区一区二| 久久久国产成人免费| 动漫黄色视频在线观看| 亚洲av熟女| 99国产精品一区二区三区| av在线天堂中文字幕 | 国产欧美日韩精品亚洲av| 最近最新中文字幕大全电影3 | 亚洲情色 制服丝袜| 亚洲 国产 在线| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 国产精品99久久99久久久不卡| 亚洲熟妇熟女久久| 高清av免费在线| 国产一区二区三区视频了| 美女高潮到喷水免费观看| 美女扒开内裤让男人捅视频| 久久婷婷成人综合色麻豆| 韩国精品一区二区三区| 日韩视频一区二区在线观看| 久久久久国产一级毛片高清牌| 久久久久久久久中文| 欧美在线黄色| 日韩高清综合在线| 国产成人免费无遮挡视频| 91成人精品电影| 免费搜索国产男女视频| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 中文字幕最新亚洲高清| 国产成年人精品一区二区 | 国产一区二区在线av高清观看| 人妻丰满熟妇av一区二区三区| 岛国视频午夜一区免费看| 搡老乐熟女国产| 国产av一区二区精品久久| 国产成人啪精品午夜网站| 一区福利在线观看| 多毛熟女@视频| av视频免费观看在线观看| 黑人猛操日本美女一级片| 黄色女人牲交| xxx96com| 国产黄a三级三级三级人| 免费观看精品视频网站| 99国产精品免费福利视频| 9色porny在线观看| 19禁男女啪啪无遮挡网站| 日日爽夜夜爽网站| 日韩视频一区二区在线观看| 欧美 亚洲 国产 日韩一| 18禁美女被吸乳视频| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 欧美性长视频在线观看| 亚洲国产欧美一区二区综合| 女同久久另类99精品国产91| 成年人黄色毛片网站| 色哟哟哟哟哟哟| 欧美人与性动交α欧美精品济南到| 色哟哟哟哟哟哟| 99精品久久久久人妻精品| 18禁观看日本| 欧美丝袜亚洲另类 | 久久中文字幕一级| 久久久久国产精品人妻aⅴ院| 久久久久久久精品吃奶| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 一二三四在线观看免费中文在| 这个男人来自地球电影免费观看| 国产99白浆流出| 在线观看日韩欧美| 新久久久久国产一级毛片| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| 色尼玛亚洲综合影院| 亚洲精品一二三| 久久人人爽av亚洲精品天堂| av有码第一页| 日韩免费高清中文字幕av| 国产亚洲精品久久久久5区| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 亚洲成人久久性| 99久久国产精品久久久| 亚洲国产精品999在线| 校园春色视频在线观看| 亚洲第一青青草原| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女 | 日韩高清综合在线| 身体一侧抽搐| 午夜老司机福利片| 国产又爽黄色视频| 国产精品一区二区在线不卡| 一二三四社区在线视频社区8| 99国产精品99久久久久| 天堂中文最新版在线下载| 亚洲 国产 在线| 女同久久另类99精品国产91| 久久久久久久午夜电影 | 亚洲成人精品中文字幕电影 | 最新美女视频免费是黄的| 嫩草影视91久久| 十八禁人妻一区二区| 欧美性长视频在线观看| 色综合站精品国产| 久久久久久久久免费视频了| 午夜a级毛片| 色婷婷av一区二区三区视频| 国产三级在线视频| 校园春色视频在线观看| 男女床上黄色一级片免费看| 99国产精品99久久久久| 欧美成人性av电影在线观看| 一区二区三区激情视频| 精品无人区乱码1区二区| 亚洲国产精品999在线| 色尼玛亚洲综合影院| 中文字幕人妻丝袜一区二区| 久久久久久久久中文| 日本a在线网址| 曰老女人黄片| 成人黄色视频免费在线看| 丝袜在线中文字幕| 午夜精品在线福利| 国产精品免费视频内射| 一边摸一边做爽爽视频免费| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 大香蕉久久成人网| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| 精品第一国产精品| 黄色女人牲交| 亚洲精品国产一区二区精华液| 男女午夜视频在线观看| 99久久国产精品久久久| 久久婷婷成人综合色麻豆| 后天国语完整版免费观看| av天堂在线播放| 精品久久久久久成人av| 国产精品一区二区三区四区久久 | 亚洲五月天丁香| 亚洲精品中文字幕在线视频| 十分钟在线观看高清视频www| 久热这里只有精品99| 欧美最黄视频在线播放免费 | 美女福利国产在线| 99国产精品一区二区蜜桃av| 精品国产亚洲在线| 夜夜夜夜夜久久久久| 午夜a级毛片| 精品国产乱子伦一区二区三区| 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一出视频| 18禁裸乳无遮挡免费网站照片 | 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 亚洲成人免费电影在线观看| 国产麻豆69| 一a级毛片在线观看| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 丰满饥渴人妻一区二区三| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| xxxhd国产人妻xxx| 91av网站免费观看| 成人特级黄色片久久久久久久| 很黄的视频免费| 80岁老熟妇乱子伦牲交| 亚洲中文日韩欧美视频| 亚洲五月天丁香| 91字幕亚洲| 久久久国产一区二区| 国产欧美日韩精品亚洲av| 亚洲自偷自拍图片 自拍| 亚洲五月婷婷丁香| 亚洲成人精品中文字幕电影 | 男女下面进入的视频免费午夜 | 黄色片一级片一级黄色片| 亚洲国产看品久久| 啦啦啦在线免费观看视频4| 国产伦人伦偷精品视频| 亚洲精品国产区一区二| 久久这里只有精品19| 国产又色又爽无遮挡免费看| 国产精品电影一区二区三区| 久久精品国产亚洲av高清一级| 亚洲精品中文字幕在线视频| x7x7x7水蜜桃| 国产蜜桃级精品一区二区三区| 看片在线看免费视频| 久久亚洲真实| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 琪琪午夜伦伦电影理论片6080| 美女国产高潮福利片在线看| 在线观看免费午夜福利视频| 亚洲片人在线观看| 男男h啪啪无遮挡| 最近最新免费中文字幕在线| 亚洲成人久久性| 成人亚洲精品av一区二区 | 色婷婷久久久亚洲欧美| 久久久国产成人免费| 午夜福利欧美成人| 久久 成人 亚洲| 人成视频在线观看免费观看| 自线自在国产av| 法律面前人人平等表现在哪些方面| 女性生殖器流出的白浆| 免费日韩欧美在线观看| 欧美日韩福利视频一区二区| 久热这里只有精品99| 亚洲av成人一区二区三| 久久久久九九精品影院| 亚洲自拍偷在线| 人人妻人人添人人爽欧美一区卜| 久久99一区二区三区| 精品电影一区二区在线| 午夜成年电影在线免费观看| 国产精品爽爽va在线观看网站 | 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 久久午夜综合久久蜜桃| 欧美日韩亚洲综合一区二区三区_| 久久精品91蜜桃| 国产极品粉嫩免费观看在线| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 成人免费观看视频高清| 水蜜桃什么品种好| 免费不卡黄色视频| 人人妻人人爽人人添夜夜欢视频| 欧美日韩瑟瑟在线播放| 亚洲人成电影免费在线| 丰满的人妻完整版| 高清欧美精品videossex| 如日韩欧美国产精品一区二区三区| 国产又爽黄色视频| 成人精品一区二区免费| 超色免费av| 巨乳人妻的诱惑在线观看| 看片在线看免费视频| 丝袜人妻中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 日日夜夜操网爽| 中国美女看黄片| 亚洲全国av大片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人免费av在线播放| 成年人免费黄色播放视频| 国产精品野战在线观看 | 精品久久久久久电影网| 成人国产一区最新在线观看| tocl精华| 久久久久亚洲av毛片大全| www国产在线视频色| 80岁老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 黄频高清免费视频| 欧美日韩瑟瑟在线播放| 青草久久国产| 亚洲成人精品中文字幕电影 | 免费看a级黄色片| 美女 人体艺术 gogo| 欧美黑人精品巨大| 高清在线国产一区| 91成年电影在线观看| 国产精品乱码一区二三区的特点 | 日韩视频一区二区在线观看| 美女国产高潮福利片在线看| 国产色视频综合| 久久久久亚洲av毛片大全| 成人三级做爰电影| 亚洲久久久国产精品|